
Unit Tests

Bill Harlan

September, 2011



Some Assertions

▶ Unit tests are “tests written by developers for the benefit of
developers”

▶ Tests are useful at all scales — for classes, packages, and
entire modules

▶ A developer who believes tests are not useful will not write
useful tests

▶ Make it easy. Accept all styles

▶ Test frameworks/harnesses should not get in the way

▶ Main obstacle: overuse of inheritance (tomorrow)



How to write a Unit Test

▶ Write a block of code that throws Exceptions or Errors when
the unexpected happens

▶ Do not catch anything; assert everything

▶ Drop it in a test suite to be run frequently



Level one: Trying to Care

▶ Go for coverage with smoke tests

▶ Exercise the code and see if it blows up. Few assertions

▶ Avoids the embarrassment of crashing in a routine workflow

▶ Useful, but will not catch enough bugs, even with 100%
coverage

▶ Motivation: Just doing your job



Level two: Fixing Bugs

▶ You have seen this bug before

▶ Reproduce the bug in a test, then fix it

▶ Motivation: Stay fixed already!



Level three: Protecting Your Code

▶ Make it hard for others to break your code

▶ Someone may misunderstand this and change it

▶ Motivation: This was not easy. Once was enough



Level four: Corner Cases

▶ I wonder what happens if I do this?

▶ You can only fix bugs you have seen

▶ Look for weaknesses. Do not play fair

▶ Now you are thinking like tester

▶ Motivation: Save time later (and have fun)



Level five: Example Code

▶ This is the right way to use this code

▶ Assertions show the behavior to expect

▶ Good coverage and free documentation

▶ Motivation: Helps you remember and saves explanations



Level six: Test Driven

▶ How do I want to be able to use this class?

▶ Like example code, but written before the implementation

▶ Try writing javadocs first too

▶ Motivation: This is going to be a masterpiece of design



Level seven: Reusable Tests

▶ How should every implementation of this interface behave?

▶ Reuse tricky test code – such as multi-threaded stress tests

▶ Upgrade many tests with each enhancement

▶ Motivation: Any new code better follow these same rules, or
I’m in trouble



What are Test Frameworks for?

▶ Group tests into suites to be run at appropriate times

▶ Useful suites:
▶ Fast and slow suites
▶ All tests for one package
▶ Tests requiring no other modules
▶ Tests dependent on a database
▶ Tests that can run under OSGi, or not

▶ Tests should outlive your testing framework. Minimize
dependencies


