APPENDIX B
EXTRACTING RELIABLE SIGNAL

The essential features of signal/noise separation are explained by its application
to velocity stacks and VSP’s. I shall now stress the assumptions that should be
observed when other applications are made. In minimizing objective function (A.3), an
iterative optimization should converge on the most “important’” details of the model
parameters first. The most important details are those that can be most reliably deter-
mined from the data. To recognize the reliability, we should ask whether perturba-

tions of parameters account for features of signal or noise.

B.1. The essential ingredients

To make the calculations of the Bayesian estimate and reliability possible, we

must assume that p, are Gaussian. Otherwise perturbations of the model parameters

will not be a linear function of the data. We can iteratively extract the non-Gaussian
details of the noise, such we did for the ground-roll in Chapter 1 and the tube wave in
Chapter 3. The assumption of Gaussianity will become increasingly accurate for the
residual noise. Most importantly, the assumption makes the gradient in equation (A.5)

become a linear function of the residual data events.
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Define the following random variables as the residual signal, noise, and data.

gTe? == f(s) _ f(SO) : n=n- nO : d™e® = g’ L n’ee (BQ)

n® is previously extracted noise. Write the gradient d’ as a single linear transform F

of the residual data d"%°.
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so that d’ =s' +n’ . (B.3)
Primes indicate a linear transformation of residual variables.

Because of the assumption that noise is Gaussian, signal and noise have remained
additive in the gradient. Now let us estimate how much of a given sample of the gra-

dient is only transformed signal. I postpone the estimation of pdf’s for the transformed
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signal and noise.

When the necessary pdf’s are known, the Bayesian and reliability estimates are
simple. Our Bayesian estimate is defined as the expected value of signal when the sum
of signal and noise is known. The Bayesian estimate of the signal s’ in a sample of

the linearly transformed data d’ is given by equation (3.14) in the text.

Though we may say that we now have the expected amounts of signal in the per-
turbations, we have not yet determined how probable these amounts are. Define the
reliability of a Bayesian estimate as the probability that the actual value is within a
fraction ¢ of the estimated value. Equation (3.15) gives the definition. Accept only

those sample perturbations with a sufficiently high reliability.

B.2. Iterative linearization for stability

Some components of the MAP perturbation may be unreliable because the for-
ward transform f largely destroys them. Another statistical simplification will allow us

to suppress these sources of instability.

As we saw, the estimate of reliability requires only that the residual noise distri-
bution be Gaussian. The signal distribution remained arbitrary. Let us instead
assume that residual signal is also Gaussian, and let us also temporarily replace the for-
ward transform f by a linearization about s° as shown in equation (3.9). The tem-

porary objective function changes into equation (3.10).

Now repeated applications of the gradient will remain a linear function of the
noise. Objective function (3.10) may be minimized by use of a conjugate gradient algo-
rithm; the cumulative perturbation d’ = As solves the linearized least-squares inver-
sion for the signal. Because of the linearity the estimations of reliability can still be

applied to this perturbation.

The iterative linearization becomes necessary when unstable components com-
pletely obscure reliable details in the gradient perturbations. This linearization
suppresses poorly determined high frequencies that often obscure the inversion of

impedance functions.



