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Introduction

Processors use different RMS velocity models for three steps of time imaging:
NMO, DMO, and poststack time migration. To perform prestack time migra-
tion in a single step, we must use a single velocity model. A single step avoids
an extra stationary-phase approximation and should produce more accurate
results. Nevertheless, results are usually worse with a single velocity model,
unless different velocities are used for flat and dipping reflections [8]. Those
velocities which best fit prestack normal moveouts over offset (flat reflections)
do not best focus the tails of diffractions over midpoint (dipping reflections).
Conventional processing hides this difference with inconsistent velocity models
for prestack moveout analysis and poststack migration.

Occasionally, processors want to use a higher-order normal-moveout equa-
tion to flatten prestack reflections with long offsets. Conventional moveout
analysis does a good job of fitting the difference in traveltime between near
and far offsets, but a higher-order moveout can better flatten any residual
bulge in the middle. Our parameterization of this normal moveout should be
consistent with the model of anisotropy used in full prestack time imaging.

It is recognized that the kinematics of surface reflection seismic data are
insensitive to component of transverse isotropy that is essential for an accurate
conversion of time to depth. We can isolate the parameters needed to fit surface
reflection times and allow depths to be calibrated independently.

A single convenient analytic approximation of transverse isotropy will allow
us to generalize prestack moveout, time imaging, and depth conversion. No
more parameters will be introduced than necessary. Parameters are decoupled
so that each can be estimated in turn, if the additional degrees of freedom are
required to fit the data.

Much of this material originally appeared in an appendix to Harlan [7].
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Parameters for approximate transverse isotropy

Assume that anisotropic velocities have a vertical axis of symmetry, like the
transversely isotropic (TI) media described in Thomsen [11]. Although that
paper is titled “Weak elastic anisotropy,” the same parameterizations can be
applied to very strong anisotropy [12].

Three of Thomsen’s parameters, Vz, δ, and ǫ, are defined by the elastic
constants of a general TI medium. These constants can be used to specify
three different effective velocities at a single point in the model. Vz is the
velocity of a wave traveling vertically along the axis of symmetry. The velocity
in any horizontal direction Vx is defined by

ǫ = V 2
x (V

−2
z − V −2x )/2, (1)

V 2
x = (1 + 2ǫ)V 2

z , and (2)

Vx ≈ (1 + ǫ)Vz. (3)

A “normal moveout velocity” (NMO) velocity Vn is defined by

δ ≡ V 2
n (V

−2
z − V −2n )/2, (4)

V 2
n = (1 + 2δ)V 2

z , and (5)

Vn ≈ (1 + δ)Vz. (6)

If these TI properties represent the equivalent medium of many isotropic layers
[3, 10], then we can expect ǫ > δ [4]. Using Backus averaging, Phil Anno of
Conoco has also shown that we can expect ǫ > 0 and δ < 0, if the Vs/Vp ratio
and Vs have a positive correlation. These inequalities imply that Vn ≤ Vz ≤ Vx.
Well calibrations have shown that shales can produce δ > 0. Such shales pos-
sess “intrinsic” anisotropy that cannot be modeled as the macroscopic equiv-
alent of isotropic layers.

Researchers at the Colorado School of Mines [12, 2] have also defined a
constant

η ≡ (ǫ− δ)/(1 + 2δ) (7)

= V 2
x (V

−2
n − V −2x )/2, (8)

V 2
x = (1 + 2η)V 2

n , and (9)

Vx ≈ (1 + η)Vn. (10)

For an equivalent medium of isotropic layers η > 0.
Many combinations of three of these parameters Vz, Vx, Vn, ǫ, δ, η can be

used to describe a TI medium for compressional P waves with a known axis
of symmetry. Such an approximation has already dropped a fourth constant
(shear wave velocity) to which compressional waves are insensitive.
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The parameter η is an excellent parameter choice for maximum sensitivity
to the kinematics of surface measurements only. If TI velocities are parame-
terized by Vx, η, and δ, we find that surface measurements are very insensitive
to δ. We could not make the same claim if ǫ were used instead of η.

I prefer the three velocities Vz, Vx, and Vn because they share the same
units. Surface measurements are very insensitive to Vz, given values for Vx
and Vn. This choice is not the most convenient for processing, however.

Phase and group velocities

The exact equations for TI phase velocity as a function of angle are rather
clumsy, and no explicit form is available for group velocity. Explicit approxi-
mate equations can fit the same family of curves almost as well as the original
correct equations [9]. I use an approximate equation for group velocity which
appears to emulate closely the exact curves for large ranges of positive ǫ and
negative δ. Estimated curves usually have larger statistical errors from noisy
data than introduced by these approximations.

Kirchhoff migrations can calculate traveltimes by integrating the group
velocity along a stationary Fermat raypath. Fourier-domain implementations
can use only the equation for phase velocities. Some raytracing methods use
both, because phases must be matched across discontinuous boundaries.

I choose approximate curves with the three velocities Vz, Vx, and Vn. Let
φ be the group angle of a raypath from the vertical. Then the group velocity
V (φ) can be expressed as

V (φ)−2 = V −2z cos2 φ+ (V −2n − V −2x ) cos2 φ sin2 φ+ V −2x sin2 φ, (11)

V (φ)−1 = V −1x

√
1 + 2η cos2 φ sin2 φ+ 2ǫ cos2 φ (12)

≈ V −1x (1 + η cos2 φ sin2 φ+ ǫ cos2 φ) (13)

≈ V −1x [1 + η cos2 φ(1 + sin2 φ) + δ cos2 φ]. (14)

Compare Byun et al [5], who use the same approximation with different pa-
rameters.

Greg Lazear of Conoco found that a symmetric equation approximates the
phase velocity v(θ) as a function of the phase angle θ, but with reciprocals of
the same velocity parameters:

v(θ)2 = V 2
z cos2 θ + (V 2

n − V 2
x ) cos

2 θ sin2 θ + V 2
x sin2 θ. (15)

Compare this phase equation closely to the group equation (11). I know of no
other approximation that allows such symmetry.
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Extended stacking moveouts

The normal-moveout (NMO) velocity Vn has a physical interpretation to justify
its name. Imagine an experiment on a homogeneous and anisotropic medium,
or imagine a small scale experiment on a smooth model. Measure the travel-
time t0 between two points placed on a vertical line, separated by a vertical
distance z = Vzt0. Now displace the upper point a distance h along a horizontal
line (a normal-moveout) and measure the new traveltime th.

Then according to equation (11) the traveltime th as a function of offset h
is exactly

t2h = t20 +

[
V −2n + (V −2x − V −2n )

h2

h2 + V 2
z t

2
0

]
h2. (16)

For small offsets h ≪ Vzt0, the value of th in this “moveout equation” is
dominated by the NMO velocity Vn rather than Vx. For large offsets h≫ Vzt0,
the raypath is almost horizontal and Vx dominates.

I find it convenient to define a stacking velocity Vh(h) as a function of the
offset h for a fixed vertical distance z = Vzt0:

Vh(h)
−2 ≡ (t2h − t20)/h

2 (17)

= V −2n + (V −2x − V −2n )
h2

h2 + V 2
z t

2
0

(18)

= V −2n

(
1− 2η

1 + 2η
· h2

h2 + V 2
z t

2
0

)
. (19)

I use the term stacking velocity because I want to suggest the best-fitting curve
over a finite range of offsets, as you would prefer for a stacking or semblance
analysis.

Simplify the moveout equation (16) to fit a pseudo-hyperbola:

t2h = t20 + h2/Vh(h)
2. (20)

The stacking velocity covers the range Vn ≤ Vh(h) ≤ Vx for a Backus equivalent
medium with negative δ, increasing in value as h increases. When η = 0, the
curve is exactly hyperbolic, and Vn = Vx. Notice that this stacking velocity
can measure a local property as well as an average to the surface. To use
two-way reflection times in (20) we need only replace the half offset h by the
full offset.

Three measurements of traveltimes at three different offsets h should uniquely
determine the three velocity constants Vz, Vx, Vn. The traveltimes are much
more sensitive to Vn, which determines moveouts at small offsets, and to Vx,
which determines moveout at larger offsets. The vertical velocity Vz affects
only the rate at which the stacking velocity (18) changes from one limit to the
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other. As long as Vz has roughly the correct magnitude, then we can fit all
measured traveltimes very well.

For imaging surface data in time, we acknowledge our insensitivity to Vz
and can approximate it with another value. We can approximate Vz ≈ Vn and
simplify stacking velocity (19) even further, as in

Vh(h)
−2 ≈ V −2n

(
1− 2η

h2

h2 + V 2
n t

2
0

)
. (21)

This new equation depends only on two parameters, Vx and Vn. A better
approximation might be Vz ≈ V 2

n /Vx, or equivalently ǫ ≈ 2δ, which is probably
closer to commonly observed values. NMO equation (16) now is equivalent to

t2h ≈ t20 +

[
V −2n + (V −2x − V −2n )

h2

h2 + V 4
n V

−2
x t20

]
h2. (22)

which is equivalent to equation (5) in Alkhalifah [1] and equation (7) in
Grechka and Tsvankin [6]. Both these publications derive from Tsvankin and
Thomsen [12], which uses an asymptotic correction of a Taylor expansion to
arrive at this approximation.

The equivalent stacking velocity is then

Vh(h)
−2 ≈ V −2n

(
1− 2η

h2

h2 + V 4
n V

−2
x t20

)
. (23)

The differences between these two approximate stacking velocities (23) and
(21) are negligible for numerical work. I will use the simpler version (21).

Moveout analyses determine the stacking velocity for a specific aperture
of offsets. Define our best isotropic approximation of the velocity to be the
stacking velocity Viso at the maximum offset hmax of the aperture:

Viso ≡ Vh(hmax) (24)

≈ Vn

(
1 + η

h2
max

h2
max + V 2

n t
2
0

)
. (25)

Or we can assume that we know the aperture angle α from the vertical, so
that

Viso ≈ Vn(1 + η sin2 α), where tanα = hmax/Vzt0. (26)

The best isotropic velocity Viso is a simple function of infinitesimal-offset NMO
velocity Vn and the anisotropic parameter η. Similarly we can use the definition
of η in (8) to rewrite the above equation (26) as

Viso ≈ Vx(1− η cos2 α). (27)
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This form will prove to be very useful when rewriting our group velocity equa-
tions (13) and (14).

A conventional velocity analysis produces densely picked values for Viso.
The anisotropic parameter η adjusts the moveout between near and far offsets.
For anisotropic moveout analysis, we could use the following offset-dependent
stacking velocity to scan for η, holding Viso constant:

Vh(h)
−2 ≈ V −2iso

[
1 + 2η

(
h2
max

h2
max + V 2

isot
2
0

− h2

h2 + V 2
isot

2
0

)]
. (28)

Conventional moveout analysis is not very sensitive to the anisotropic parame-
ter η except for unusually wide-aperture data, with offsets greater than depth.
Much more anisotropic information is available by performing a full prestack
time migration.

For prestack time migration, we can expect that conventional analysis for
Viso will best describe the moveouts of flat reflections. Dipping reflections are
difficult to pick in prestack semblance analysis because they are sparser and
move across midpoints, from gather to gather, as migration velocity changes.

Holding Viso constant, we can perturb η at a low spatial resolution until
the imaging of steep reflections improves. As η changes, there will be a small
adjustment of the bulge in flat reflections over offset, with little effect on a fully
time-migrated stack. The moveouts of dipping reflections, on the other hand,
will change drastically as η changes, with swings from positive to negative
residual moveouts, and with lateral movement over midpoint. As η improves,
you should see fault-plane reflections sharpen and focus in targeted prestack
time-migrated images Flat reflections should change little, and Viso should
require little revision after updating η. By contrast, an optimization of Vn and
η requires both to be adjusted simultaneously, with equal resolution.

Adjustment for depth ties

The group velocity equation (13) is useful for Kirchhoff depth imaging. We
can focus images very well with good values for Vx and Vn, (or Viso and η),
then adjust imaged depths to tie wells with Vz (or ǫ, or δ) while holding the
other two parameters constant.

If we have used tomographic methods to estimate isotropic interval veloc-
ities, then we should attempt also to estimate the effective aperture angle α
at each depth in the model.

To recapituate our algebra, we combine the definitions of η (9) and of
stacking velocity Vh(h) (19) to solve for the horizontal velocity:

V −1x ≈ Vh(hmax)
−1
(
1− η

V 2
z t

2
0

h2
max + V 2

z t
2
0

)
(29)

≈ V −1iso (1− η cos2 α). (30)
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At maximum offset, we recover our previous relationship (27) between Viso and
Vx. Substitute this horizontal velocity into the group velocity (13). We can
then adjust the isotropic velocities Viso with η and ǫ according to

V (φ)−1 ≈ V −1
iso (1− η cos2 α)(1 + η cos2 φ sin2 φ+ ǫ cos2 φ). (31)

The isotropic velocity Viso best explains the moveouts and traveltimes of rela-
tively flat reflections over the finite aperture. The parameter η modifies these
velocities at high dips, to image steep reflections better without degrading
the imaging of low-dip reflections. The third parameter ǫ has little effect on
measured surface traveltimes at any dip (holding Viso and η constant), but
can be adjusted as necessary to tie wells. We can also use layered medium
theory to predict this ǫ from estimated η and Vx. Or if shale dominates, with
strong intrinsic anisotropy and δ > 0, then correlations can be calibrated for
a given area. At worst, we know 0 < ǫ, so we can assume a default value of
η/2 < ǫ < 2η, as appropriate for a given area. Such a default value is still
better than a default value of 0.

These three parameters Viso, η, and ǫ do not completely decouple the steps
of anisotropic velocity analysis, but they should minimize the number of iter-
ations necessary for revisions.

If you prefer to use δ instead of ǫ as the third degree of freedom, then
simply use the definition of η in (7) for

V (φ)−1 ≈ V −1
iso (1− η cos2 α)[1 + η cos2 φ(1 + sin2 φ) + δ cos2 φ]. (32)

Adjustment of narrow-aperture velocities

Although I greatly prefer the approach in the preceding section, many prefer
to treat their estimated isotropic velocities as equivalent to NMO velocities
Vn. Such an assumption is not a bad one if angles are limited during interval
velocity estimation. Dix inversion of stacking velocities may be closer to Vn
if stacking velocities were consciously optimized for inner offsets. The Com-
mon Reflecting Surface tomography of Karlsruhe University inverts only the
curvature of reflection traveltimes around zero-offsets.

For such approaches, one might prefer a different triplet of velocity param-
eters: Vn, η, and δ. Group velocity can be described by replacing Vx in the
approximation (14) with Vn and η as in equation (10). Additionally we can
replace ǫ with δ, using the definition of η in (7):

V (φ)−1 ≈ V −1
n (1− η sin4 φ+ δ cos2 φ) (33)

≈ V −1
n [1− η(1− cos2 φ sin2 φ) + ǫ cos2 φ]. (34)
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Again Vn and η should be sufficient to model all surface reflection travel-
times, for all dips. Holding these two constant, we can adjust either δ or ǫ to
tie known well depths.
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