
Optimization of a Neural Network

William S. Harlan

Feb 1999

Introduction

Many discussions of neural networks unnecessarily introduce a large vocabulary of specialized
terms. In fact, neural networks are a simple system of recursive equations that can be
optimized by conventional means. Any good book on optimization provides all the necessary
tools [1]. We need only unambiguously write down the equations we are using, identify the
objective function, and calculate a few derivatives.

The Recursive Equations

Neural-network equations map vectors of known data dm to corresponding known vectors of
parameters pm, indexed by m. The vector of parameters might be actual physical properties
or statistical probabilities. Data can be physical measurements or numbers that index pos-
sible events. The equations contain unknown coefficients, or weights, that the user adjusts
until known parameters are predicted accurately. Then it is hoped that unknown parameters
can be estimated from new measurements of data.

Let’s look at how simple these equations are. Intermediate vectors xm,n are expressed
recursively as a function of other vectors xm,n−1, usually with a different dimensionality.
The first vector xm,0 corresponds to data dm, and the final vector xm,N corresponds to the
parameters pm to be estimated. First, a pre-established non-linear transform fn is applied
to each element of a vector. Then linear transforms W

˜
n calculate each sample of the output

vector as a weighted sum of samples from the input vector.

xm,n
i =

∑
j

W n
ijf

n
j (x

m,n−1), (1)

or xm,n = W
˜

n · fn(xm,n−1) (in vector notation). (2)

Find parameters pm ≈ xm,N (3)

from data dm = xm,0. (4)

Usually the non-linear functions fn apply independently to each element of the vector.
Functions are expected to be monotonic over the range 0 ≤ f(x) < f(x′) ≤ 1 for values
0 ≤ x < x′ ≤ 1. The derivative df(x)/dx should also be continuous. Usually, the shape is a

1



Optimization of a Neural Network — W.S. Harlan 2

sigmoid or linear. Because the notation presents no difficulty, I write this non-linear scalar
function as a more general vector function.

I could also have reversed the order of linear and non-linear operators. A reversed order
is equivalent to setting f1 and W

˜
N to identity operations. This form (1) is somewhat easier

to manipulate.
This nonlinear recursion can be abbreviated as

pm ≈ xm,N(dm,W
˜

1, . . . ,W
˜

N) = xm,N . (5)

Perturbations of an Objective Function

The best weightsW
˜

n are assumed to minimize the following least-squares objective function
F , summed over all known pairs m of data measurements dm and model parameters pm.

min
{Wn

ij}
F (W

˜
1, . . . ,W

˜
N ) =

∑
m,k

[pmk − xm,Nk (dm,W
˜

1, . . . ,W
˜

N)]2 =
∑
m

‖pm − xm,N‖2. (6)

A perturbation of the weights δW
˜

n will result in a linearized perturbation δF of the
objective function:

δF (W
˜

1, . . . ,W
˜

N) = −∑
m,k

(pmk − xm,Nk )δxm,Nk = −∑
m

(pm − xm,N ) · δxm,N , (7)

where δxm,0 = 0 (8)

and δxm,ni =
∑
j

δW n
ij · fnj (xm,n−1) +

∑
j

W n
ij

∑
k

∂

∂xk
fnj (x

m,n−1)δxm,n−1
k , (9)

or δxm,n = δW
˜

n · fn(xm,n−1) +W
˜

n · ∇̃fn(xm,n−1) · δxm,n−1. (10)

Unperturbed variables retain their original reference values from the original non-linear for-
ward transform (1).

The perturbations (9) of the vector elements δxm,n are expressed as a linear function of
perturbed weights δW

˜
n. We can abbreviate the recursive equations (9) as a single linear

transform G
˜
m,n.

δxm,Nk =
∑
n,i,j

Gm,n
kij δW

n
ij (11)

or δxm,N =
∑
n

G
˜
m,n : δW

˜
n. (12)

Gradient optimization also requires the adjoint of this linearization. If the linearized forward
transform is expressed as a matrix, then the adjoint transform is just the transpose of this
matrix. A matrix would be unwieldy, but the recursive version of the adjoint equations is
not.

δW n
ij =

∑
m

δxm,ni fnj (x
m,n−1), (13)



Optimization of a Neural Network — W.S. Harlan 3

or δW
˜

n =
∑
m

δxm,n[fn(xm,n−1)]∗ (outer product), (14)

where δxm,N = −(pm − xm,N )δF (15)

and δxm,n−1
k =

∑
j

∂

∂xk
fnj (x

m,n−1)
∑
i

W n
ijδx

m,n
i , (16)

or δxm,n−1 = [∇̃fn(xm,n−1)]∗ · (W
˜

n)∗ · δxm,n. (17)

These perturbations do not equal those of the forward linearization. The adjoint recursion
can also be abbreviated with the linear transform G

˜
m,n.

δW n
ij =

∑
m,k

Gm,n
kij δx

m,N
k , (18)

or δW
˜

n = (G
˜
m,n)∗ · δxm,N . (19)

If the linear transform G
˜
m,n were written as a single large matrix, then indeed the matrix

would be identical in the forward and adjoint equations (11) and (18). For optimization,
fortunately, we need not construct this matrix explicitly (as would be required by singular-
value decomposition). Instead, we need only be able to multiply this linear transform or its
adjoint by specific perturbations, using the recursions (9) and (16).

Optimization

The simplest neural network “training” algorithm adjusts the previous choice of weights by
a scaled gradient. This recursive algorithm is called back-propagation.

1. Initialize each weight matrix W
˜

n.

2. Calculate ∆W n
ij =
∑

m,k G
m,n
kij [p

m
k − xm,N

k (dm,W
˜

1, . . . ,W
˜

N)],
∆W
˜

n = (G
˜
m,n)∗ · (pm − xm,N).

3. Replace each W
˜

n by W
˜

n + ǫ∆W
˜

n.

4. Return to step 2.

To reduce the objective function, the perturbation reverses the sign of the gradient. The
small scale factor ǫ is sometimes fixed a priori and never changed. If the scale factor is too
small, then many consecutive steps may move in the same direction. If the scale factor is
too large, the perturbations may increase rather than decrease the objective function and
may even diverge. Although this algorithm is most commonly cited, we can easily do better.
Let us turn to standard non-linear optimization methods.

Many steepest-descent algorithms would replace step 3 by a line search to find an optimum
scale factor.

1. Initialize each weight matrix W
˜

n.



Optimization of a Neural Network — W.S. Harlan 4

2. Calculate ∆W
˜

n as before.

3. Find α to minimize
∑

m,k [p
m
k − xm,N

k (dm,W
˜

1 + α∆W
˜

1, . . . ,W
˜

N + α∆W
˜

N)]2

4. Replace each W
˜

n by W
˜

n + α∆W
˜

n.

5. Return to step 2.

This revised algorithm is guaranteed to find a local minimum where the gradient is zero.
Step sizes are large. The line search can use combinations of parabolic fitting and golden
sections for speed and robustness.

A good estimate of the scale factor can be estimated without an explicit line search.

1. Initialize each W
˜

n.

2. Calculate ∆W
˜

n as before.

3. Calculate ∆xm,N =
∑

nG
˜
m,n : ∆W

˜
n .

4. Find α to minimize
∑

m,k [p
m
k − α∆xm,N

k ]2 ,

or equivalently α = (
∑

m,k pmk ∆xm,N
k )/

∑
m,k∆xm,N

k ∆xm,N
k ).

5. Replace each W
˜

n by W
˜

n + α∆W
˜

n.

6. Return to step 2.

When the linearization is a good approximation (particularly in the vicinity of a mini-
mum), the scale factor will be very accurate. Each iteration will be much more efficient than
a line search. If the scaled perturbation increases the objective function in early non-linear
iterations, then a line search can be used until the linearization improves.

The convergence of these steepest descent algorithms should be improved by a PARTAN
or Fletcher-Reeves algorithm, which retains and combines consecutive gradients. Neural
network references use the word “momentum” to describe similar strategies, usually with
invariable scale factors.

An even more efficient alternative is to solve the linearized least-squares problem fully in
each iteration — a Gauss-Newton approach:

1. Initialize each W
˜

n.

2. Find the perturbations {w
˜
1, . . . ,w

˜
N} that minimize∑

m,k [p
m
k − xm,N

k (dm,W
˜

1, . . . ,W
˜

N)−∑n,i,j G
m,n
kij w

n
ij]

2.

3. Replace each W
˜

n by W
˜

n +w
˜
n.

4. Return to step 2.



Optimization of a Neural Network — W.S. Harlan 5

Since the objective function in step 2 is a fully quadratic function of the perturbations w
˜
n,

we can use iterative least-squares methods like conjugate gradients.
If a steepest descent algorithm were applied with an unlimited number of infinitesimal

perturbations, then the changing weights would continuously decrease the objective function
until a local minimum was reached. Visualize following a path that is directly downhill
at every point. The path cannot ascend, no matter what may be beyond the next rise.
Practical descent algorithms take large step sizes and may step over a small local increase
in the objective function, to find another minimum beyond.

To increase the chances of finding the global minimum with the pseudo-quadratic objec-
tive function (6), we could initialize with different initial weights and discard suboptimum
local minima. If different weights consistently lead to the same solution, then the objective
function is probably convex and has only one global minimum.

References

[1] David G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison
Wesley, 1973.


