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Introduction

Usually numerical methods of inversion and optimization begin with a discretized version of the
simulation equations. Differential equations are often easier to manipulate directly, so that dis-
cretization can be delayed until last. Here is an example of optimally perturbing acoustic param-
eters to fit recorded acoustic waves. This approach is seen most often by researchers in optimal
control, such as J.L. Lions [3] who also publishes often in the field of geophysics.

This example derives from an explanation I received from Patrick Lailly in 1984 at the Institut
Français du Petrole. In 1986, I expanded on his example in my lab notebook. After all these years,
I still find it a useful example of multi-dimensional seismic inversion, so I’ve finally typed it up.
In a separate paper [1], I show a detailed application with the one-dimensional wave-equation.

The methods in this particular paper should be much easier to generalize to other equations
and model parameters. My preferred methods of optimization (Gauss-Newton) require linearizing
simulation equations and calculating the adjoint of those linearized equations. Here is how you
can do most of that work analytically.

In the course of this derivation, I will derive what is called reverse-time migration, with an
image directly related to perturbations of physical parameters.

Example linear equations and objective function

Let us consider the experiment of a single exploration seismic field gather with a seismic source
places at a surface point xs and with receivers placed at points xr. Each trace is recorded for
a finite time 0 ≤ t ≤ T . Assume that land experiments record the derivative of pressure with
depth. (Marine experiments record the pressure directly, which is simpler.) Let c(x) be the
acoustic velocity, and ρ(x) the density. Describe the pressure field Ps(x, t) with the following
two-dimensional acoustic equation.[

1

c(x)2ρ(x)

∂2

∂t2
−∇·

(
1

ρ(x)
∇
)]

Ps(x, t) = fs(t)δ(x− xs)δ(t), (1)

where the source term
fs(t) =∇·[f(t)/ρ(xs)], (2)
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and f(t) contains body forces.
Use the free surface and causal time boundary conditions:

Ps(x, t)|z≤0 = 0, Ps(x, t)|t≤0 = 0, and
∂2

∂t2
Ps(x, t)

∣∣∣∣∣
t≤0

= 0, (3)

where z = x1 is the vertical dimension of x.
The surface boundary condition on P is not sufficient and must be extended before P is well-

determined. Choose a semi-spherical surface ∂Ω that cannot be reached by waves traveling at the
maximum velocity Vmax for the maximum recorded time T :

the surface ∂Ω = {x | z = 0 or ‖ x ‖= TVmax}, (4)

for the region Ω = {x | z ≥ 0 and ‖ x ‖≤ TVmax}. (5)

The radius should be large enough so that no wave reaching this boundary ∂Ω can be recorded
during the time 0 ≤ t ≤ T . We can arbitrarily extend the free surface around this closed boundary
without affecting the modeled pressures within the recorded time:

Ps(x, t)|x∈∂Ω = 0. (6)

The variational form

The acoustic differential equation (1) can also be written in the following variational integral form,
also called the weak form:∫ T

0

∫
Ω

{[
1

c(x)2ρ(x)

∂2

∂t2
−∇·

(
1

ρ(x)
∇
)]

Ps(x, t)− fs(t)δ(x− xs)δ(t)

}
q(x, t) dx dt = 0, (7)

for all H2 functions q(x, t). This integral is true for all q (whose second derivatives are square
integrable) if and only if the original equation (1) also holds.

Conveniently, finite elements [2] also uses the weak form. Zero-value boundary conditions (3)
and (4) are implied by the weak form, and are called natural boundary conditions.

The objective function

Let Drs(t) be the pressure field recorded within the volume at known receiver positions xr for a
source located at xs. Define an objective function to match a recorded pressure field Drs(t) with a
modeled field Ps(x, t) in a least-squares sense. The objective function is a functional of the three
unknown functions of physical parameters ρ, c, and fs(t).

J [ρ, c, fs] =
1

2

∑
r,s

∫ T

0

[
Drs(t)− 1

ρ(xr)

∂P (xr, t)

∂z

]2
w(t)dt

=
1

2

∑
r,s

∫ T

0

∫
Ω

[
Drs(t)− 1

ρ(x)

∂Ps(x, t)

∂z

]2
δ(x− xr) dxw(t) dt. (8)
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w(t) is a smooth weighting function that we will find convenient.
The optimization problem can be stated as follows: find the model parameters ρ, c, and s

so that the field Ps(x, t) defined by (7), (6), and (3) minimize the objective function (8). The
objective function has a least-squares form. The weighting factor w(t) compensates for geometric
spreading and absorption to give approximately equal weight to all parts of the modeled data.

General variational and objective functions

To optimize the model parameters model parameters ρ, c, and s according to equations (7), (6),
and (8), one must discover how a perturbation of the model parameters will affect the objective
function (8). Let us abbreviate the variational form (7) of our differential equations in the following
form: ∫ T

0

∫
Ω
q(x, t)L1[m(x, t)]Ps(x, t) dx dt = 0, ∀q(x, t). (9)

where m(x, t) = [c(x), ρ(x), fs]. (10)

P is also understood to be a implicit function ofm(x, t), as determined by the acoustic equations.
The exact form of L1 is unimportant for the remainder of this derivation, except that it must

be expressible as a linear functional operator on P . L1 is a nonlinear operator on m(x, t). By a
different choice of model parameters (1/c2ρ , 1/ρ, and fs), one could also linearize L1 with respect
to the model m, but this is not necessary.

Similarly, we can rewrite our objective function (8) in a more general form as

J [m(x, t)] =
1

2

∑
r,s

∫ T

0

∫
Ω
{Drs(t)− L2[m(x, t), t]Ps(x, t)}2 δ(x− xr) w(t) dx dt. (11)

Perturbations of the general formulation

First, let us use the variational equation (9) to relate perturbations of the model δm to perturba-
tions of the pressure δPs:∫ T

0

∫
Ω
qL1δPs dx dt = −

∫ T

0

∫
Ω
q∇m(L1P ) · δm dx dt, ∀q. (12)

The gradient product can be understood as meaning

∇mG(m) · δm =
d

dǫ
G(m+ ǫδm)

∣∣∣∣∣
ǫ=0

, where G(m) = L1P, (13)

and both L1 and P are functions of m.
In this form the linear operators L1 and ∇m(L1P ) both operate on perturbed quantities. Let

us replace this form by one that uses the adjoint operators on q. If a and b are functions, the
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adjoint L∗ of a linear operator L is defined by < a|Lb >a=< L∗a|b >b. The brackets indicate the
scalar products in the domains of a and b. For example

< q1|q2 >q =
∫ T

0

∫
Ω
q1(x, t)q2(x, t) dx dt, (14)

< P1|P2 >P =
∫ T

0

∫
Ω
P1(x, t)P2(x, t) dx dt, and (15)

< m1|m2 >m =
∫
Ω
m1(x)m2(x) dx. (16)

So we can rewrite our perturbation equation (12) as follows:∫ T

0

∫
Ω
δPsL

∗
1q dx dt = −

∫
Ω
δm
∫ T

0
[∇m(L1P )]∗q dt dx, ∀q. (17)

If L1 contains only linear differential operators, then we can obtain their adjoints L∗
1 by integrating

by parts, as I will show in a later section. This makes explicit the implicit dependence of P on m.

Gradient of the general objective function

Next let us relate perturbations in the objective function J to perturbations in the pressure P and
modeling parameters used in L2.

−δJ =
∑
r,s

∫ T

0

∫
Ω
δ(x− xr)(Drs(t)− L2Ps)L2δPs w dx dt

+
∑
r,s

∫ T

0

∫
Ω
δ(x− xr)(Drs(t)− L2Ps)∇m(L2Ps) · δm w dx dt (18)

=
∑
r,s

∫ T

0

∫
Ω
δPsL

∗
2[δ(x− xr)(Drs(t)− L2Ps) w] dx dt

+
∑
r,s

∫
Ω
δm ·

∫ T

0
[∇m(L2Ps)]

∗[δ(x− xr)(Drs(t)− L2Ps) w]dt dx. (19)

Now for the clever part. The perturbed integral (17) must be true for all q. Choose q then so that
(17) equals the first term of the gradient (19) for all δP :∫ T

0

∫
Ω
δPL∗

1q dx dt =
∑
r,s

∫ T

0

∫
Ω
δPL∗

2[δ(x− xr)(Drs(t)− L2P ) w] dx dt. (20)

For this equation to be true for all δP , q must satisfy

L∗
1q =

∑
r,s

L∗
2[δ(x− xr)(Drs(t)− L2P )w]. (21)

This adjoint system of equations is very similar to the original set of equations for P , but with a
new source term — the difference between the modeled and the actual data.
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If q satisfies this equation, then we can combine the variational equation (17) and the pertur-
bation (19) of the objective function to remove intermediate dependence on δP .

δJ =
∫
Ω
δm

∫ T

0
[∇m(L1P )]∗q dt dx

− ∑
r,s

∫
Ω
δm

∫ T

0
[∇m(L2P )]∗[δ(x− xr)(Drs(t)− L2P )w] dt dx. (22)

We can express this perturbation (22) as a gradient of the objective function with respect to model
parameters m(x) at a specific location x.

∇mJ [m(x)] =
δJ

δm

∣∣∣∣∣
m(x)

=
∫ T

0
[∇m(L1P )]∗q dt

− ∑
r,s

∫ T

0
[∇m(L2P )]∗[δ(x− xr)(Drs(t)− L2P )w] dt. (23)

The first term of this gradient (23) is the most important because it provides information about
m at all positions. The second term is non-zero only at points {xr} where the data are recorded.

The simplest possible steepest descent optimization would perturb a reference value of m by
a scaled version of its gradient. That is,

min
α

J [mn + α∇mJ(mn)], and mn+1 =mn + α∇mJ(mn). (24)

One would also sum the perturbations over all source positions to for a single perturbation of the
model. After one perturbation, the new reference value of mn+1 could be used to calculate a new
reference wavefield and a new perturbation.

Perturbation and adjoint of the acoustic equation

Let us now leave the general formulation and see how to handle the acoustic equation in particular.
Let us first perturb the objective function (8) as the general perturbed form (19):

−δJ [ρ, c, fs] = −∑
r,s

∫ T

0

∫
Ω
δ(x− xr)

[
Drs(t)− 1

ρ(x)

∂Ps(x, t)

∂z

]
1

ρ(x)

∂

∂z
δPs(x, t) dxw(t) dt

+
∑
r,s

∫ T

0

∫
Ω
δ(x− xr)

[
Drs(t)− 1

ρ(x)

∂Ps(x, t)

∂z

]
∂Ps(x, t)

∂z

δρ(x)

ρ(x)2
dxw(t) dt. (25)

Next we integrate by parts over z.

−δJ [ρ, c, fs] =
∑
r,s

∫ T

0

∫
Ω
δPs(x, t)

∂

∂z

{
δ(x− xr) 1

ρ(x)

[
Drs(t)− 1

ρ(x)

∂Ps(x, t)

∂z

]}
dxw(t) dt

+
∑
r,s

∫ T

0

∫
Ω
δρ(x)

{
δ(x− xr) 1

ρ(x)2

[
Drs(t)− 1

ρ(x)

∂Ps(x, t)

∂z

]
∂Ps(x, t)

∂z

}
dxw(t) dt. (26)
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The boundary term disappears because we require δPs(x, t) to vanish at the boundary, as does
Ps(x, t).

The next step is to place the variational acoustic equation (7) as in our general perturbed form
(17). First perturb:

∫ T

0

∫
Ω

[
1

c(x)2ρ(x)

∂2

∂t2
−∇·

(
1

ρ(x)
∇
)]

δPs(x, t) dx dt

=
∫ T

0

∫
Ω
q(x, t)

[
1

c(x)3ρ(x)

∂2Ps(x, t)

∂t2

]
δc(x) dx dt

+
∫ T

0

∫
Ω
q(x, t)

{
1

c(x)2ρ(x)2
∂2Ps(x, t)

∂t2
−∇·

[
1

ρ(x)2
∇Ps(x, t)

]}
δρ(x) dx dt

−
∫ T

0

∫
Ω
q(x, t)δ(x)δfs(t) dx dt. (27)

We can integrate the time derivatives in (27) by parts twice over time. The divergence and gradient
terms of (27) can be rewritten with the following chain rule and divergence theorem:∫

Ω
a∇·b dx =

∫
Ω
∇·(ab) dx−

∫
Ω
b ·∇a dx

=
∫
∂Ω
n̂ · b a dσ −

∫
Ω
b ·∇a dx. (28)

a is a scalar and b is a vector. n̂ is the unit normal vector to the boundary ∂Ω of the volume Ω.
So here is the rewritten form of the perturbed variational form (27):

∫
Ω
q(x, t)

1

c(x)2ρ(x)

∂

∂t
δPs(x, t) dx

∣∣∣∣∣
t=T

−
∫
Ω

∂q(x, t)

∂t

1

c(x)2ρ(x)
δPs(x, t) dx

∣∣∣∣∣
t=T

+
∫ T

0

∫
Ω
δPs(x, t)

1

c(x)2ρ(x)

∂2q(x, t)

∂t2
dx dt−

∫ T

0

∫
∂Ω

q(x, t)
1

ρ(x)

∂

∂n
δPs(x, t) dσ dt

−
∫ T

0

∫
Ω
δPs(x, t)∇·

[
1

ρ(x)
∇q(x, t)

]
dx dt =

∫ T

0

∫
Ω
δc(x)

[
1

c(x)3ρ(x)

∂2Ps(x, t)

∂t2

]
q(x, t) dx dt

−
∫ T

0

∫
Ω
δρ(x)

[
1

c(x)2ρ(x)2
∂2Ps(x, t)

∂t2
− 1

ρ(x)2
∇Ps(x, t) ·∇

]
q(x, t) dx dt

+
∫ T

0

∫
∂Ω

δρ(x)

[
1

ρ(x)2
∂Ps(x, t)

∂n

]
q(x, t) dσ dt−

∫ T

0

∫
Ω
δfs(t)δ(x)q(x, t) dx dt. (29)

The boundary terms at t = 0 disappear because δP must observe the boundary conditions of P .
The ∂P/∂n = n̂ ·∇P term is the derivative in the direction of the normal to the surface. Such
terms do not disappear. Other integrals that evaluate δP on the surface ∂Ω do disappear. Now set
the right side of the expanded (29) equal to the first term of of the perturbation of the objective
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function (26) for all perturbations δP of the wavefield. Then{
1

c(x)2ρ(x)

∂2

∂t2
−∇·

[
1

ρ(x)
∇
]}

q(x, t)

= −∑
r,s

∂

∂z

{
δ(x− xr)

w(t)

ρ(x)

[
Drs(t)− 1

ρ(x)

∂Ps(x, t)

∂z

]}
(30)

in the interior. The boundary terms on ∂Ω and t = T must vanish so

q(x, t)|t=T =
∂

∂t
q(x, t)

∣∣∣∣∣
t=T

= q(x, t)|∂Ω = 0. (31)

These adjoint equations (30) and (31) require an extrapolation on q that is very similar to that on
P , except that extrapolation must now proceed backards in time from t = T . A single application
of this extrapolation is called reverse-time migration. Errors between the modeled and recorded
data act as sources through the extrapolation at the locations of the receivers.

The first term of δJ in equation (25) now equals the right side of (29). The boundary conditions
on q make the surface ∂Ω integral disappear. Thus

∇cJ(x) =
δJ

δc(x)
=
∫ T

0

1

c(x)3ρ(x)

∂2Ps(x, t)

∂t2
q(x, t)dt. (32)

∇ρJ(x) =
δJ

δρ(x)
=
∫ T

0

[
1

c(x)2ρ(x)2
∂2Ps(x, t)

∂t2
− 1

ρ(x)2
∇Ps(x, t) ·∇

]
q(x, t)dt

−∑
r,s

∫ T

0

δ(x− xr)

ρ(x)2

[
Drs(t)− 1

ρ(x)

∂Ps(x, t)

∂z

]
∂Ps(x, t)

∂z
w(t)dt (33)

∇sJ(t) =
δJ

δfs(t)
= q(x, t)|x=0 (34)

To perturb c we take the dot product of the extrapolated q with a filtered version of the previous
guess of the wavefield 1

c3ρ
∂2P
∂t2

. The perturbation of ρ requires the application of a differential

operator on q. The second term of ∇ρJ1 (from equation [26]) applies only at the receiver points
and acts as an amplification of the recorded trace. The perturbation of s is simply equal to the
adjoint wavefield q evaluated at the source position.

To start the iterations set fs(t) = δ(t) and the parameters c and ρ to reasonable guesses. The
first perturbation will attempt to invert the primary reflections and is equivalent to a so-called
reverse-time migration. The second iteration ostensibly would invert second-order scattering, but
the poor choice of background velocities would make it difficult to predict the second-order form
from the first-order scattering. This inversion, like all inverse scattering methods, can only invert
high-frequency parameters changes that are likely to create reflections. Smoother changes in c and
ρ must be known beforehand.
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