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Geophysi
al inversion frequently makes use of regularization, su
h as the

\Tikhonov regularization" used by Kenneth Bube and Bob Langan [1℄ for

their \
ontinuation approa
h." I'd like to suggest an adjustment of the obje
-

tive fun
tion to allow faster 
onvergen
e of regularization and the 
ontinuation

approa
h. A damping term that dis
ourages 
omplexity 
an be repla
ed equiv-

alently by a 
hange of variables to model simpli
ity dire
tly.

For an optimized inversion, an obje
tive fun
tion typi
ally in
ludes a norm

of the di�eren
e between a data ve
tor d and a non-linear transform f(m) of

a model ve
tor m. The global minimum of this norm is often 
at, with little

sensitivity to large variations in the model.

For regularization (more than simple damping), a linear operator D

~

is


hosen to remove simpli
ity and preserve 
omplexity when applied to the model

ve
tor asD

~

�m. Most examples use a roughening operator, su
h as a derivative,

to suppress long wavelengths and amplify short wavelengths. A regularized

obje
tive fun
tion adds a norm of this roughened model to the norm �tting

the data:

min

m

J

1

(m) = kd� f(m)k
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+ 
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~
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2

: (1)

This parti
ular l

2

obje
tive fun
tion is easily motivated as a maximum a pos-

teriori estimate of the model given the data. Additive noise is assumed to

be Gaussian and un
orrelated with zero mean. The model is assumed to be

Gaussian and zero mean, with an inverse 
ovarian
e matrix equal to

C

~

�1

m

� E(mm

�

)
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= D

~

�

�D

~

: (2)

Asterisks indi
ate adjoints. The assumption that model samples are 
orrelated

is equivalent to the en
ouragement of simpli
ity. A 
onstant 
 adjusts the ratio

of varian
es assumed for noise and the model.

Bube and Langan's 
ontinuation approa
h begins with a large 
onstant 
,

minimizes the obje
tive fun
tion (1) for a �rst model, then redu
es 
 repeatedly

for a tradeo� between simpli
ity and a

ura
y in �tting the re
orded data.

They �nd the simplest model possible to explain the data adequately, without

preventing the model from using 
omplexity to �t genuinely signi�
ant features
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of the data. Informative details are added to the model when justi�ed by the

data, without unne
essary distra
ting details that are poorly determined from

the data.

Ea
h minimization of the obje
tive fun
tion (1) for a �xed 
onstant 
 typ-

i
ally uses a des
ent method su
h as Gauss-Newton with 
onjugate gradients.

The properties of the gradient are important to the rate of 
onvergen
e:

r
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0
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� [d� f(m

0
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�m

0

: (4)

The model is perturbed with s
aled sums of su

essive gradients, evaluated

for di�erent referen
e versions m

0

of the model. The �rst term (3) is able

to introdu
e fairly arbitrary 
omplexity into the model immediately and at

any time, even if su
h 
omplexity will be suppressed at the global minimum

of obje
tive fun
tion (1). The se
ond term (4) must wait until the referen
e

model m

0

has been revised in later iterations to suppress this unne
essary


omplexity. Meanwhile, the �rst term (3) of later iterations 
an 
ontinue to

introdu
e other unne
essary 
omplexity into the model. The se
ond term

removes 
omplexity in the referen
e model, not in the 
urrent perturbation.

Convergen
e is slow. Slow 
onvergen
e is a natural 
onsequen
e of applying

perturbations whi
h do not have any of the 
orrelations assumed for the model

samples. Instead, let us introdu
e the appropriate 
orrelation into all gradient

perturbations.

Assume a new operator S

~

as a partial right inverse of D

~

, so that the two

operators approximate an identity: D

~

�S

~

� I

~

. This operator should be designed

to preserve simpli
ity and suppress 
omplexity, although without destroying


omplexity entirely. If D

~

is a roughening operator like di�erentiation, then S

~

should be a smoothing operator like leaky integration.

More dire
tly, de�ne the simpli�
ation operator as a fa
tored form of the

assumed 
ovarian
e. (Indeed, su
h a fa
torization always exists be
ause the


ovarian
e is positive semide�nite.)
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Minimization of the original obje
tive fun
tion (1) is entirely equivalent to

minimizing the obje
tive fun
tion with a new variable m

0

, where m = S

~

�m

0

:
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The se
ond term redu
es to a simple damping norm, demonstrating that the

new model m

0

now has un
orrelated samples. Although we optimize this new

model m

0

, we keep and use the original model m = S

~

� m

0

. Continuation


an adjust the 
onstant 
 as before, with identi
al results (assuming 
omplete

minimization of the obje
tive fun
tions [1℄ and [6℄).
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The revised gradient 
ontains the desired 
orrelation:
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The last operation appearing in the �rst term of this gradient (7) is the ad-

joint S

~

�

of the operator S

~

, both of whi
h are simpli�
ation operators. (Many

su
h operators are self-adjoint.) Unlike the �rst term (3) of the original gra-

dient, the revised term (7) suppresses 
omplexity from ea
h new perturbation

dire
tion. The original term (3) 
ontained arbitrary 
orrelations. If (3) were

entirely un
orrelated, then the revised term (7) would have exa
tly the desired


orrelations assumed by the 
ovarian
e (5).

The two obje
tive fun
tions produ
e di�erent results when optimization is

in
omplete. A des
ent optimization of the original obje
tive fun
tion (1) will

begin with 
omplex perturbations of the model and slowly 
onverge toward

an in
reasingly simple model at the global minimum. A des
ent optimization

of the revised obje
tive fun
tion (6) will begin with simple perturbations of

the model and slowly 
onverge toward an in
reasingly 
omplex model at the

global minimum. The latter strategy is more 
onsistent with the overall goal

of the 
ontinuation approa
h. A more e
onomi
 implementation 
an use fewer

iterations. InsuÆ
ient iterations result in an insuÆ
iently 
omplex model, not

in an insuÆ
iently simpli�ed model.

I also prefer to adjust more than a single s
ale fa
tor 
. Instead, assume

a suite of simpli�
ation operators S

i

~

whi
h allow in
reasing 
omplexity as the

index i in
reases. (Furthermore 8m

0

i

and j > i; 9 m

0

j

3 S
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~

�m

0
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= S
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~
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0

i

.)

We then 
an optimize a suite of possible models, fm

i

= S

i

~

�m

0

i

g of in
reasing


omplexity as i in
reases. Use ea
h optimized model m

i

to initialize the next

m

i+1

. As multigrid methods have shown, we 
an thus improve our overall


onvergen
e by optimizing the most reliable (smoothest) global features in the

model before attempting �ner detail.

Finally, I think it easier to 
hoose a simpli�
ation operator S

~

whi
h de-

s
ribes the desirable features of the model, rather than an operator D

~

whi
h

keeps only features thought to be undesirable. I see some value in 
onstru
ting

both, however, to 
he
k the 
onsisten
y of assumptions.
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