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Geophysical inversion frequently makes use of regularization, such as the
“Tikhonov regularization” used by Kenneth Bube and Bob Langan [1] for
their “continuation approach.” I’d like to suggest an adjustment of the objec-
tive function to allow faster convergence of regularization and the continuation
approach. A damping term that discourages complexity can be replaced equiv-
alently by a change of variables to model simplicity directly.

For an optimized inversion, an objective function typically includes a norm
of the difference between a data vector d and a non-linear transform f(m) of
a model vector m. The global minimum of this norm is often flat, with little
sensitivity to large variations in the model.

For regularization (more than simple damping), a linear operator D
˜

is
chosen to remove simplicity and preserve complexity when applied to the model
vector asD

˜
·m. Most examples use a roughening operator, such as a derivative,

to suppress long wavelengths and amplify short wavelengths. A regularized
objective function adds a norm of this roughened model to the norm fitting
the data:

min
m

J1(m) = ‖d− f(m)‖2 + c‖D
˜
·m‖2. (1)

This particular l2 objective function is easily motivated as a maximum a pos-
teriori estimate of the model given the data. Additive noise is assumed to
be Gaussian and uncorrelated with zero mean. The model is assumed to be
Gaussian and zero mean, with an inverse covariance matrix equal to

C
˜
−1
m ≡ E(mm∗)−1 = D

˜
∗ ·D
˜
. (2)

Asterisks indicate adjoints. The assumption that model samples are correlated
is equivalent to the encouragement of simplicity. A constant c adjusts the ratio
of variances assumed for noise and the model.

Bube and Langan’s continuation approach begins with a large constant c,
minimizes the objective function (1) for a first model, then reduces c repeatedly
for a tradeoff between simplicity and accuracy in fitting the recorded data.
They find the simplest model possible to explain the data adequately, without
preventing the model from using complexity to fit genuinely significant features
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of the data. Informative details are added to the model when justified by the
data, without unnecessary distracting details that are poorly determined from
the data.

Each minimization of the objective function (1) for a fixed constant c typ-
ically uses a descent method such as Gauss-Newton with conjugate gradients.
The properties of the gradient are important to the rate of convergence:

∇mJ1(m0) = ∇f(m0)
∗ · [d− f(m0)] (3)

+ cD
˜

∗ ·D
˜
·m0. (4)

The model is perturbed with scaled sums of successive gradients, evaluated
for different reference versions m0 of the model. The first term (3) is able
to introduce fairly arbitrary complexity into the model immediately and at
any time, even if such complexity will be suppressed at the global minimum
of objective function (1). The second term (4) must wait until the reference
model m0 has been revised in later iterations to suppress this unnecessary
complexity. Meanwhile, the first term (3) of later iterations can continue to
introduce other unnecessary complexity into the model. The second term
removes complexity in the reference model, not in the current perturbation.
Convergence is slow. Slow convergence is a natural consequence of applying
perturbations which do not have any of the correlations assumed for the model
samples. Instead, let us introduce the appropriate correlation into all gradient
perturbations.

Assume a new operator S
˜
as a partial right inverse of D

˜
, so that the two

operators approximate an identity: D
˜
·S
˜
≈ I
˜
. This operator should be designed

to preserve simplicity and suppress complexity, although without destroying
complexity entirely. If D

˜
is a roughening operator like differentiation, then S

˜should be a smoothing operator like leaky integration.
More directly, define the simplification operator as a factored form of the

assumed covariance. (Indeed, such a factorization always exists because the
covariance is positive semidefinite.)

C
˜
m ≡ E(mm∗) = S

˜
∗ · S
˜
. (5)

Minimization of the original objective function (1) is entirely equivalent to
minimizing the objective function with a new variable m′, where m = S

˜
·m′:

min
m′ J1(S

˜
·m′) = J2(m

′) = ‖d− f(S
˜
·m′)‖2 + c‖m′‖2. (6)

The second term reduces to a simple damping norm, demonstrating that the
new model m′ now has uncorrelated samples. Although we optimize this new
model m′, we keep and use the original model m = S

˜
· m′. Continuation

can adjust the constant c as before, with identical results (assuming complete
minimization of the objective functions [1] and [6]).
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The revised gradient contains the desired correlation:

∇m′J2(m
′
0) = S

˜
∗ ·∇f(S

˜
·m′

0)
∗ · [d− f(S

˜
·m′

0)] (7)

+ cm′
0 (8)

The last operation appearing in the first term of this gradient (7) is the ad-
joint S

˜
∗ of the operator S

˜
, both of which are simplification operators. (Many

such operators are self-adjoint.) Unlike the first term (3) of the original gra-
dient, the revised term (7) suppresses complexity from each new perturbation
direction. The original term (3) contained arbitrary correlations. If (3) were
entirely uncorrelated, then the revised term (7) would have exactly the desired
correlations assumed by the covariance (5).

The two objective functions produce different results when optimization is
incomplete. A descent optimization of the original objective function (1) will
begin with complex perturbations of the model and slowly converge toward
an increasingly simple model at the global minimum. A descent optimization
of the revised objective function (6) will begin with simple perturbations of
the model and slowly converge toward an increasingly complex model at the
global minimum. The latter strategy is more consistent with the overall goal
of the continuation approach. A more economic implementation can use fewer
iterations. Insufficient iterations result in an insufficiently complex model, not
in an insufficiently simplified model.

I also prefer to adjust more than a single scale factor c. Instead, assume
a suite of simplification operators Si

˜
which allow increasing complexity as the

index i increases. (Furthermore ∀m′
i and j > i, ∃ m′

j ∋ Sj
˜
·m′

j = Si
˜
·m′

i.)

We then can optimize a suite of possible models, {mi = Si
˜
·m′

i} of increasing
complexity as i increases. Use each optimized model mi to initialize the next
mi+1. As multigrid methods have shown, we can thus improve our overall
convergence by optimizing the most reliable (smoothest) global features in the
model before attempting finer detail.

Finally, I think it easier to choose a simplification operator S
˜
which de-

scribes the desirable features of the model, rather than an operator D
˜

which
keeps only features thought to be undesirable. I see some value in constructing
both, however, to check the consistency of assumptions.
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