
Constrained Dix Inversion

William S. Harlan

Dec. 1999

Overview

Dix inversion estimates interval velocities from picked stacking velocities, usu-
ally as a function of vertical two-way time. The stacking velocities are assumed
to be explained by a root-mean-square (RMS) averaging of the interval veloc-
ities. A conventional method [3] uses an explicit solution that inverts the
RMS integral. This explicit solution easily produces wildly unrealistic interval
velocities from small variations in stacking velocities.

Constrained inversion fits stacking velocities with a smooth, bounded in-
terval velocity function. This method is slower but almost always preferable
to the fast explicit solution. Damped least-squares minimizes errors in picked
velocities and also minimizes unnecessary complexities in interval velocities.

Constrained inversion distributes errors uniformly when fitting the squared
reciprocal of stacking velocity. This distribution corresponds to uniform errors
in residual normal moveouts.

Interval velocities are constructed as a sum of overlapping bell curves ex-
tending in all spatial directions. Coefficients of these curves are damped
to avoid unnecessary sharpness in the estimated interval velocities. Rough
changes in interval velocity are allowed only if strongly required by the input
data. Finally, interval velocities are not allowed to exceed specified minimum
and maximum values.

An explicit Dix solution inverts one vertical function at a time, whereas
least-squares finds a global solution. Each estimated coefficient must explain
stacking velocities over a range of spatial positions on the map. Redundancy
greatly improves, so a single bad stacking function does not easily corrupt
the solution. A few bad data points are largely ignored when contradicted by
many neighboring values.

Many geophysical programmers familiar with damped least-squares have
developed similar methods [5, 2, 1].

1



Constrained Dix Inversion — W.S. Harlan 2

Smooth interval velocities

We assume interval velocities to be smooth in all physical directions. This
assumption is most appropriate for “soft” rocks, where fluid pressure domi-
nates seismic velocities. In “hard” rocks, velocities tend to be homogeneous in
intervals, with abrupt discontinuities at changes in lithology. Soft constraints
can still accurately describe the time/depth conversion of hard media.

A smoothing operator with unit area (DC) does not introduce any bias
into smoothed values. On average, values are no larger or smaller than before.
If interval velocities are sampled as a function of vertical traveltime, then
depth is just the integral of velocity over time. If smoothing does not bias
the interval velocity, then it also does not bias depth conversions. Away from
the immediate vicinity of a large discontinuity, smoothing has no effect on
time/depth conversions.

Our convolutional smoothing operator is a bell-shaped curve described by
a third-order polynomial. The curve has unit area to preserve magnitudes.
The convolution is renormalized at boundaries to preserve unit area when the
convolution is truncated. A smoothing width is the “half-width” of the curve,
the span over which the curve drops to half the peak value. The total width
of the curve is twice the smoothing interval. Over this interval, the third-
order curve is b(r) = r2(2r − 3) + 1, where r ≤ 1 is the distance from the
peak divided by the smoothing distance. The curve has zero slope at the peak
and endpoints. (The half-width in the Fourier domain is approximately the
reciprocal of the half-width in the untransformed domain.)

Squared stacking slownesses

A stacking “velocity” is a parameter for the hyperbolic curve that best fits the
moveout of reflection times over source-receiver offset. Stacking velocities are
estimated from prestack seismic data by scanning ranges of acceptable values
and examining weighted sums of the data over offset. Resolution depends on
the width of seismic wavelets at the largest recorded offsets. Regular sampling
of stacking velocities does not correspond to regular sampling of wavelets.

However, the squared reciprocal of stacking velocity, which we call squared
stacking slowness (or “sloth”), does regularly sample wavelets at the farthest
offset. We prefer to minimize errors in squared slowness as the best way to
minimize errors in corresponding reflection times.

Interpreters tend to pick stacking velocities at locations where moveouts
change the most. The locations of picks are not necessarily more significant
or reliable than others. Interpreters also examine moveout adjustments at
locations well away from the picks. If the interpolated behavior is acceptable,
then no new picks are added. For this reason, we give interpolated stacking
velocities the same significance as picked values.



Constrained Dix Inversion — W.S. Harlan 3

We treat an interpolated regular grid of squared stacking slownesses as our
hard data to be inverted. Usually input stacking velocities are interpolated
linearly between picked times, with constant values off the ends. Functions are
then triangulated and interpolated linearly over spatial directions. A regular
grid of values needs enough resolution to represent all useful information in
the original functions.

Root-mean-square equations

For this inversion, we assume a stacking “velocity” to be equivalent to the
root-mean-square (RMS) average of interval velocities. This equivalence holds
exactly only for infinitesimal offsets in a horizontally stratified medium.

Let a single sampled function of squared stacking slownesses be represented
by the one-dimensional vector s, and interval velocities by v. Vector indices
mark samples of vertical traveltime. Index zero corresponds to zero time. We
write the RMS average of v in discrete form as

1/sj =
1

j + 1

j∑
k=0

v2k. (1)

A fast, explicit inverse does exist for the RMS equation (1):

vk =

(
k

sk
− k − 1

sk−1

) 1
2

. (2)

This equation (2) is typically referred to as the Dix equation, although the
original reference [3] preferred more accurate variations. This explicit solu-
tion can easily fail when required to take the square root of negative numbers.
Worse, statistically meaningless variations in stacking velocities can cause in-
terval velocities to vary wildly.

For a constrained inversion, we also find it useful to write the linearization
of this equation. A small perturbation ∆vk of interval velocity results in the
following perturbation ∆sj of squared stacking slowness:

∆sj = [−2 s2j/(j + 1)]
j∑

k=0

vk∆vk. (3)

Unperturbed variables retain their reference values.
Finally, the adjoint linearized equation gives the perturbation of interval

velocity required to explain a small perturbation of squared stacking slowness:

∆vk = vk
∞∑
j=k

[−2 s2j/(j + 1)]∆sj. (4)

Gradient optimization methods like conjugate-gradients usually require the
adjoint.



Constrained Dix Inversion — W.S. Harlan 4

Damped least-squares

Damped least-squares attempts to balance data errors with minimal complex-
ity in the model.

Let B
˜

be a linear smoothing operator with unit area. Define a smooth
interval velocity with the convolution

vk ≡
∑
i

bk−i wi ≡ (B
˜
·w)k. (5)

where the vector w contains the coefficients of smooth, shifted basis functions.
Implicitly, this smoothing operator also convolves over all spatial indices, which
we suppress in our equations.

The best coefficients w should minimize the following objective function:sj −
 1

j + 1

j∑
k=0

(B
˜
·w)2k

−1

2

+ ǫ
∑
k

w2
k. (6)

The small damping factor ǫ is the ratio of the variance of data errors to the
variance of interval velocities. A large range of plausible values will give similar
results. Damping ensures that small variations in squared stacking slowness
will not cause extreme variations in interval velocity. For a purely quadratic
objective function, the damping is equivalent to pre-whitening, which adds a
small constant to the diagonal of the least-squares “normal” equations.

Optimization

Once we have written the objective function (6), we have unambiguously spec-
ified a solution, although only implicitly. Much has been written on the opti-
mization of objective functions, so we will not cover the details here. See Luen-
berger [4] for more information on the Gauss-Newton method and conjugate-
gradients.

The objective function (6) is not a perfectly quadratic function of the in-
terval velocities v but behaves similarly to a quadratic. The objective function
has a clear global minimum and is convex far away from that minimum. In
the vicinity of the minimum, the objective function is indistinguishable from
a quadratic.

If a suboptimum set of coefficients w produce a particular set of squared
stacking slownesses s, then the actual picked slownesses may differ by an error
∆s. With linearization (3), we can say that the best perturbation of coefficients
∆w should minimize the following objective function:∆sj −

2s2j
j + 1

j∑
k=0

(B
˜
·w)k(B

˜
·∆w)k

2 + ǫ
∑
k

(wk +∆wk)
2. (7)



Constrained Dix Inversion — W.S. Harlan 5

This approximate objective function (7) is perfectly quadratic. The optimum
solution ∆w is a linear function of the data error ∆s. Quadratic objective
functions are easily optimized by the conjugate-gradient algorithm.

In our implementation, an outer Gauss-Newton loop iteratively replaces the
objective function by the quadratic approximation (7). Each Gauss-Newton
iteration begins with the best interval velocity function so far. The first itera-
tion uses a constant interval velocity function far from the correct solution. An
inner conjugate-gradient loop minimizes the objective function that has been
approximated as a quadratic to find a perturbation to the reference interval
velocity. A non-linear line-search finds the best factor to scale this perturba-
tion before adding to the reference interval velocity function. (The line-search
algorithm uses a combination of a parabolic Newton method for speed and a
golden-section search for robustness.) Finally, the Gauss-Newton loop begins
again with a new approximation of the objective function. Typically, some four
to eight iterations are necessary for the Gauss-Newton and conjugate-gradient
loops.

We apply hard constraints (minimum and maximum values) to interval
velocities immediately after updating with a perturbation. These constraints
are honored during the non-linear line-search, but not during the temporary
linearization for conjugate-gradients.

As a final optimization, early iterations begin with a large smoothing op-
erator, and thus few degrees of freedom. After full optimization with an over-
simplified interval velocity, the smoothing is reduced. Finer details are allowed
into the velocity model only when the background velocity is known to be near
the final correct solution. Because of damping, rough details are introduced
only when justified to fit a sufficiently large error in the picked data.

References

[1] Jon Claerbout. Geophysical Estimation by Example. http://sepwww.
stanford.edu/sep/prof/toc html/toc html/gee/toc html/, 1999.

[2] R. Clapp, P. Sava, and J.F. Claerbout. Interval velocity estimation with a
null space. Stanford Exploration Project Report, http://sepwww.stanford.
edu/research/reports/, 97:147–156, 1998.

[3] C. Hewett Dix. Seismic Prospecting for Oil. Harper and Brothers, 1952.

[4] David G. Luenberger. Introduction to Linear and Nonlinear Programming.
Addison Wesley, 1973.

[5] J. L. Toldi. Velocity analysis without picking. PhD thesis, Stanford Uni-
versity, 1985.


