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Simultaneous velocity filtering of hyperbolic reflections
and balancing of offset-dependent wavelets

William S. Harlan*

ABSTRACT

Hyperbolic reflections and convolutional wavelets
are fundamental models for seismic data processing.
Each sample of a ‘‘stacked” zero-offset section can
parameterize an impulsive hyperbolic reflection in a
midpoint gather. Convolutional wavelets can model
source waveforms and near-surface filtering at the shot
and geophone positions. An optimized inversion of the
combined modeling equations for hyperbolic travel-
times and convolutional wavelets makes explicit any
interdependence and nonuniqueness in these two sets
of parameters.

I first estimate stacked traces that best model the
recorded data and then find nonimpulsive wavelets to
improve the fit with the data. These wavelets are used
for a new estimate of the stacked traces, and so on.
Estimated stacked traces model short average wave-
lets with a superposition of approximately parallel
hyperbolas; estimated wavelets adjust the phases and
amplitudes of inconsistent traces, including static

shifts. Deconvolution of land data with estimated
wavelets makes wavelets consistent over offset; re-
maining static shifts are midpoint-consistent. This
phase balancing improves the resolution of stacked
data and of velocity analyses.

If precise velocity functions are not known, then
many stacked traces can be inverted simultaneously,
cach with a different velocity function. However, the
increased number of overlain hyperbolas can more
easily model the effects of inconsistent wavelets. As a
compromise, | limit velocity functions to reasonable
regions selected from a stacking velocity analysis—a
few functions cover velocities of primary and multiple
reflections. Multiple reflections are modeled sepa-
rately and then subtracted from marine data.

The model can be extended to include more compli-
cated amplitude changes in reflectivity. Migrated re-
flectivity functions would add an extra constraint on
the continuity of reflections over midpoint. Including
the effect of dip moveout in the model would make
stacking and migration velocities equivalent.

INTRODUCTION

Hyperbolic reflections and convolutional wavelets are
fundamental models for processing seismic data (e.g., Rob-
inson, 1983), yet the two are rarely considered together.
Deconvolution can improve the quality of common-midpoint
(CMP) stacks and of semblance velocity analyses by making
the recorded seismic wavelets shorter and more consistent
from trace to trace. However, deconvolution does not cus-
tomarily use the information gained by stacking and velocity
analysis.

The normal-moveout (NMO) model assumes that the
earth’s impulse response is a sequence of hyperbolas in CMP
gathers. Convolving traces of this impulse response with

various wavelets can model isotropic sources and filtering
near the surface. NMO correction of a CMP gather flattens
hyperbolic reflections and makes structural information
more accessible. Wavelets, on the other hand, are distorted
by the NMO corrections.

Tisin (1986) estimated distorted wavelets directly by ex-
amining small time windows of NMO-corrected CMP gath-
ers. Because the windows were short, he could model each
trace with a single convolutional wavelet that had been
uniformly stretched or dilated according to the amount of
NMO correction.

Claerbout (1986) suggested simultaneous deconvolution of
CMP gathers before and after NMO corrections to distin-
guish the effects of a source wavelet from those of predict-
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able reflection coefficients (short-period multiples). He con-
cluded that the oversimplicity of NMO corrections as a
downward-continuation process limited the ability to dis-
criminate between structural and source information.

Thomas (1986) proposed treating a deconvolved zero-
offset trace as a model of reflectivity at all offsets. He
modeled nonzero offset traces by stretching the zero-offset
trace carefully (to preserve the magnitude of reflections). He
then estimated a single convolutional wavelet that made
these stretched traces best resemble the recorded traces of
the CMP gather. He used this wavelet to deconvolve the
zero-offset trace, restretch, and reestimate the wavelet until
convergence was reached.

The above approaches use the NMO model to improve
deconvolution. The opposite goal, using the convolutional
model to improve stacking, remains. How do we use more
than one trace to estimate reflectivity? Can we consider
more than one wavelet per CMP gather? Can we consider
more than one velocity function?

Static shifts are usually treated independently because
they are a simple special case of the convolutional model. (A
static shift is a convolution with a shifted delta function.)
Ronen and Claerbout (1985) and Rothman (1986) have shown
how to determine static corrections based on the quality of
the hyperbolic stack at chosen velocities. Determining stat-
ics and (residual) velocities simultaneously is difficult unless
structure is assumed to be flat (Schultz, 1985).

Hutchinson and Link (1984) and Thorson and Claerbout
(1985) separated multiple and primary reflections by modeling
them as superpositions of hyperbolas with different velocities;
the unwanted multiples could be modeled separately and
subtracted. If this model-based estimate of reflectivity could
incorporate the undistorted convolutional wavelets of Thomas
(1986), it should be possible to model reflections with greater
accuracy than by either method alone.

This paper does not aim to go beyond the assumptions of
the hyperbolic and convolutional models but rather to find
the simplest means of considering the two together. Instead
of defining the stacked section and convolutional wavelets
by means of an algorithm, I shall treat them as parameters in
equations that model the data. To invert these equations, a
damped least-squares objective function is optimized itera-
tively by a conjugate-gradient algorithm. An optimized in-
version of the equations must consider the overlapping
effects of the parameters on the data. Accurate estimation of
stacking velocities is made unnecessary by including a
number of stacks with different stacking-velocity functions.

ASSUMPTIONS OF THE NORMAL MOVEOUT
AND CONVOLUTIONAL MODELS

A hyperbolic NMO equation makes very restrictive phys-
ical assumptions, but it can be extended for more compli-
cated reflections. CMP gathers include all shot positions s
and geophone positions g with identical midpoint coordi-
nates y = (s + g)/2. Each gather is arranged by the offset
coordinate 7 = (g — ). If an impulse expands through a
medium of constant velocity v and reflects from a flat
interface, the traveltime ¢ is given by

e T m
v

where 1, is the traveltime at zero offset.

For a dipping layer, the equation remains exact if v is set
equal to the medium velocity divided by the cosine of the
layer’s dip (Levin, 1971). Alternatively, reflection times from a
horizontally stratified medium (layers are flat; velocity changes
only vertically) can be approximated to second order in 4 if v is
replaced by the root-mean-square (rms) velocity:

~v(z’) dz’
0
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where z is the vertical depth. With dip correction, rms
velocity can be extended to nonflat layers. A linear super-
position of hyperbolic reflections can also model refections
from curved and diffracting interfaces.

The NMO model assumes that the data represent an
impulse response; that is, the shots and geophones have
impulsive radiation patterns. Surface-consistent convolution
assumes that the earth’s impulse response has been filtered
independently at the shot and geophone positions to create
the recorded data. Because convolution is time-invariant, it
cannot easily model filtering at greater depths—a problem
for tomographic inversion. Similarly, convolution cannot
easily model angular changes in reflection coefficients if
more than one reflection appears in the data.

Let w, (s, 1) model the shot waveform as filtered at the
near surface, and let w, (g, #) model filtering near and by the
geophone. The data can be modeled by

data (y, h, t) = impulse (y, A, t) * w(y, h, 1),
where
w(y, h, ) =w(y —hi2, ) xwe(y + hi2,0. )

The wavelets within a single midpoint gather (with a com-
mon y) share no surface-consistent wavelets. Each offset
possesses an independent wavelet.

At first sight, it appears easiest to estimate the smaller
number of surface-consistent wavelets on the right side of
equation (3) rather than an independent wavelet for each
midpoint and offset. However, note that the data are a linear
function of the independent wavelets but not of the surface-
consistent wavelets. As an example of the resulting compli-
cations, all shot wavelets could be given an arbitrary phase
shift and geophone wavelets the negative of that phase shift
without affecting w(y, h, 1. It would be useful to know first
how much information the data provide for a direct estimate
of independent wavelets (one for each trace). Then one
could consider how much additional help, or hindrance,
surface consistency would provide.

The usual goals of these models are (prestack) deconvo-
lution and NMO stack. To see the implicit constraints on the
data, one could try to reverse the normal processing se-
quence to reconstruct the data from the stacked traces and
convolutional wavelets.



Velocity Filtering and Wavelet Balancing 1457

Imagine that a stacked seismic profile represents, as post-
stack migration assumes, a zero-offset impulse response. Each
stacked trace can be reverse corrected according to its NMO
velocity function to model an entire midpoint gather. The stack
does not preserve information on changes in amplitude and
phase with offset, so the reverse NMO correction must make
simple assumptions on the geometric spreading of reflections,
frequency absorption, and changes in reflection coefficients
with angle. If several stacked sections are available, then one
can sum their modeled gathers to create reflections, such as
primaries and multiples, that arrive simultaneously with dif-
ferent velocities. Finally, each trace can be convolved with
corresponding wavelets. This sequence of steps is defined next
with simple modeling equations.

A MODEL FOR MIDPOINT GATHERS

Let us begin with a model for a single midpoint gather.
Choose a set, indexed by j, of rms velocity functions vi(ty)
that cover all reasonable primary and multiple velocities. Let
r;{t,) be the corresponding ‘‘deconvolved stacked” traces
that contain the amplitudes and zero-offset arrival times of
reflections—call them reflectivity functions. The following
equation maps each point of a reflectivity function to a
hyperbola over offset:

hyp(h, 1) = Efa[z -\/12+ hz/vjz(to):,rj(to) dty. (4
J

If the reflectivity function contains an impulsive delta func-
tion, then the impulsive hyperbolic reflection is constant in
strength over offset. If a reflectivity function contains a
band-limited pulse, the hyperbolic waveform changes in
amplitude over offset but not in area.

Thomas (1986) created nonzero offset traces from a de-
convolved zero-offset trace by an interpolation scheme that
also preserved the reflectivity strength over offset. Equation
(4) would apply an identical stretch to a single reflectivity
function if the delta function were replaced by a square gate
with a width equal to the sampling rate.

When used directly in discrete form, equation (4) is
convolved with a tapered sin (2)/f function (a sinc function)
that is band-limited to the Nyquist frequency of the data
(Bracewell, 1978). The convolution replaces the delta func-
tion by the sinc function.

To integrate equation (4) analytically, note that the delta
function is equivalent to a sum of delta functions positioned at
the zeros of the argument and divided by derivatives of the
argument (Bracewell, 1978). If the velocity function has a
significant derivative, the integration must sum over multiple
zeros with clumsy scale factors. For constant-velocity func-
tions,

t

hypi(h, 1) = 2 r;(\/1* = b)) ———=. (5)
;] A/ -k}

This form is identical to that used by Thorson and Claerbout
(1985) but with a scaling of amplitudes over offset. For
velocity-space filtering, this form is best; but it becomes very
inconvenient when convolved with wavelet in time.

To model one CMP gather, convolve each trace of the

hyperbolic reflections in equation (4) with a wavelet. The
integration over time removes the delta function:

data, (h, 1) = w(h, 1) * hyp; (h, 1)
= Efw[h, t— \/ 1(2) + hz/ng(fo) rj(to) dty.
J

As a simple example, the reflectivity functions in Figure la
are first mapped to the hyperbolas of Figure 2a with equation
(4). The two nonzero reflectivity functions correspond to
constant velocities of 1.4 and 2 km/s (labeled in squared
reciprocal velocity, or squared slowness). Only three non-
zero samples (reflections) appear—two with the same veloc-
ity and two with the same zero-offset traveltime. Note that
the length and amplitude of the sinc wavelet are constant
with offset in Figure 2a, unlike an NMO-stretched wavelet.

Figure 1b contains a set of convolutional wavelets; three
are inconsistent in phase. Figure 2b shows the convolution
of these wavelets with the corresponding traces of Figure 2a.
Many high frequencies are lost, and the zero-offset travel-
times of the reflections are more ambiguous.

Clearly, modeling equation (6) is not completely invert-
ible. The transformation destroys information in the phase
and amplitude spectra of the convolutional wavelets and
reflectivity functions. For instance, the polarities of the
reflectivity functions and wavelets could be reversed simul-
taneously without affecting the modeled data. Frequencies
missing from wavelets cannot be recovered in the reflectivity
without using statistical constraints.

Numerically, nonuniqueness can be worse still. The less
that NMO stretches a trace and the shorter a convolutional
wavelet, the more nearly the two operations commute (cf.,
Claerbout, 1986). Thus, the phase spectra of wavelets and
reflectivity can be altered in ways that almost cancel each
other’s effects on the data. Fortunately, such distortions in
spectra must equally affect wavelets at all offsets and reflec-
tivity functions at all velocities. We can still hope to recog-
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Fig. 1. (a) Two nonzero reflectivity functions with veloci-
ties of 1.4 and 2 km/s (squared slownesses of 0.5 and 0.25
s?/km?). (b) Convolutional wavelets, three of which are
inconsistent in phase.
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nize relative differences between wavelets at different
offsets.

Some problems posed by one-dimensional (1-D) deconvo-
lution can be ameliorated by inversion of the two-dimen-
sional (2-D) model. Any single trace of Figure 2b could be
regarded as having a lengthy wavelet and one reflection
coefficient. One could also subdivide a wavelet and claim
more than three reflections. (A statistical method of 1-D
deconvolution might prefer three reflections, but more com-
plicated wavelets and reflections make such decisions diffi-
cult.) Because different hyperbolic reflections converge with
increasing offset, inversion of the 2-D model! can avoid fewer
than three reflections by encouraging wavelets to be as
consistent as possible. Within a single reflection, the lobes of
long consistent wavelets remain parallel—an easier appear-
ance to model with convolution than with reflections at
different velocities.

The NMO equation (1) describes only the initial arrival
times of the wavelets, not the tails. The hyperbola that best
fits the tails of wavelets corresponds to a lower velocity than
a hyperbola fitting the heads of wavelets. This difference in
velocity is small when wavelets are short, so a reflectivity
function can still model much of the phase of consistent
short wavelets.

AN OBJECTIVE FUNCTION AND OPTIMIZATION

Optimization methods improve endlessly, so I first define
an inversion of relation (6) in terms of an objective function
rather than by a specific algorithm. This function measures
the least-squares error between the recorded and modeled
data (indicated by a circumflex) and constrains the un-
knowns with two penalty functions (scaled by small con-
stants a, and a,, to ensure stability):
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Fic. 2. (a) Three hyperbolic reflections modeled from equa-
tion (4) and the reflectivity functions in Figure 1a. Convolu-
tion with sinc functions avoids aliasing. (b) A convolution of
the reflections in (a) with the wavelets in Figure 1b. High-
and low-frequency information is lost, and zero-offset arrival
times are more ambiguous.

2
J=ff {error (h, t)} dh dt
2 2
+a,zJ{rj(to)j| dt0+awfj[w(h, t)} dh dt, (7)
J

where error (h, r) = data (h, 1) — (ﬁta1 (h, 1).

The optimal r;(t,) and w(h, 1) minimize J. The set of
velocity functions v,(,) must be chosen beforehand. Re-
member that each velocity function has a corresponding
reflectivity function. For convenience I write s, g, y, and z as
continuous variables. Their integrals can in all cases be
replaced by a sum over sampled data points.

The effect of the two penalty functions can be compared to
adding a small constant to the diagonal of a possibly singular
matrix before inversion (prewhitening). The penalty func-
tions do not much affect the results of an incomplete
optimization. Different optimization methods, in practice,
constrain the solution differently.

Minimizing this least-squares objective function is equiv-
alent to a maximum-likelihood estimate, assuming that
noise, the reflectivity, and the wavelets are all Gaussian and
white (see Kendall and Stuart, 1979). More justifiable statis-
tical assumptions can be imagined, but this form is a conve-
nient first choice.

Quadratic objective functions are ideal for gradient-de-
scent methods of optimization because the required gradi-
ents are linear functions of the data. The gradient of the
objective function with respect to the wavelet function
(array) includes a correlation of the data error defined by
equation (7) and the impulsive hyperbolas modeled by
equation (4):

3J
swih. 1) _thpl(h, ¢ — 1) error (h, ') di’ + a,wlh, 1).
®)

The penalty term on the energy of the wavelet adds a term
proportional to the wavelet.

The gradient with respect to the reflectivity includes an
NMO stack that uses the wavelets as interpolation functions:

oJ
_ h, _ 2 hZ/ X 2
5ri(t0) Jf wI: t—="N\/ty+ hlv(to)

x error (h, t) dt dh + a,r{ty). 9

Note that J is a quadratic function of the reflectivity
function or of the wavelets but not of both simultaneously. A
simultaneous steepest-descent perturbation of both sets of
parameters unfortunately requires an expensive line search
to scale the combined gradients (8) and (9). If, however,
either parameter is optimized independently, the necessary
scale factor can be calculated from simple dot products (see
Luenberger, 1984, on quadratic objective functions). If the
wavelets are not allowed to change, then the optimum
reflectivities are a linear function of the error, and vice
versa.

I optimize objective function (7) alternately with respect to
the wavelets and reflectivity:
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(1) Assume that wavelets are impulse functions and
find the optimum reflectivity functions.

(2) Leaving reflectivity functions unchanged, find the
optimum wavelets. If unsatisfied, go on.

(3) Reestimate the reflectivity functions with the new
wavelets, then return to step (2).

Each step solves an overdetermined least-squares problem.
This procedure has little chance of optimizing the objective
function completely. The first estimated wavelets will ex-
plain only what the reflectivity cannot; the next estimate of
the reflectivity explains what these wavelets cannot; and so
on. The procedure will not work at all if phases are too
inconsistent: step (1) will be unable to model the very
nonhyperbolic reflections, and step (2) will have nothing to
improve upon.

The reflectivity and wavelets in Figures 3a and 3b were
each reestimated three times. Only two constant-velocity
functions were included in the model—those at the two
correct velocities corresponding to 1.4 and 2 km/s. Each
least-squares optimization used four conjugate-gradient
steps. The modeled data are barely distinguishable from the
original data when plotted at the same scale. The rms
amplitude of the difference between the modeled and original
data is less than 1 percent of the original data.

The three reflections appear in the reflectivity functions
with the average phase and amplitude of the wavelets, unlike
the original impulses. The estimated wavelets are approxi-
mately zero phase with time shifting, unlike the original
wavelets. The reflectivity functions model a consistent av-
erage wavelet with a superposition of approximately parallel
hyperbolas. As predicted, the estimated wavelets model
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only relative changes in phase and amplitude that cannot be
modeled by the reflectivity.

These results do not have such high resolution as those
obtained by Thomas (1986) from noiseless, synthetic data.
When data are noiseless, one can remove all damping from
the estimated parameters and minimize errors in the data
down to machine precision (at the risk of numerical instabil-
ity). A majority of Thomas’s iterations only slightly modified
the wavelet and modeled data, but they greatly improved the
phase and frequency content of his reflectivity function.

The magnitude of noise in recorded data can easily exceed
that of the error in these modeled data, so recorded data will
have even less resolving power. If objective function (7) has
a broad flat minimum, then gradient-descent methods cannot
reach the vicinity of the global minimum in a small number of
steps. There is not much point in continuing to descend,
however, if we are only marginally improving the modeling
of noise.

The preceding example demonstrates that information
about the absolute phase of wavelets is lost in the data
modeled by equation (5). In fact, some information is also
lost about relative differences between wavelets when stack-
ing velocities cannot be chosen with precision.

To test an extreme case, I reestimated the same reflec-
tivity functions using a range of constant-velocity functions.
These results are shown in Figure 4a. The functions were
sampled evenly over squared slowness (the reciprocal of
squared velocity), for which resolution is approximately the
same at high and low values. Velocities ranged from 1.2 km/s
to infinity. Note that much energy appears in traces with
incorrect velocities—even at infinite velocity. This panel has
about the same resolution over velocity as a semblance
stack, so it can be used as an invertible velocity analysis, like
the velocity space of Thorson and Claerbout (1985). These
reflectivities can also be used as stacked traces (usually sums
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Fig. 3. (a) Estimated reflectivity functions from minimiza-
tion of objective function (7). Only two correct velocity
functions were included in the model; all traces with zero
amplitudes were excluded. (b) Corresponding estimated
convolutional wavelets. Reflectivity functions model the
average phase of the reflections; estimated wavelets have
approximately zero phase and differ only to adjust inconsis-
tent traces. The modeled and original data are barely distin-
guishable.
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Fic. 4. (a) Estimated reflectivity functions for a large range
of velocity functions. (b) Corresponding convolutional
wavelets. These estimates model data as well as the results
in Figure 3. Wavelets no longer accurately model inconsis-
tent phase at large offsets because the additional overlapping
hyperbolas can also model these differences.
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of amplitudes over hyperbolic paths). Stacks discriminate
poorly between reflections with different velocities because
low offsets add coherently even when high offsets are
inconsistent. Reflectivity must optimize hyperbolas at all
offsets.

When combined with the convolutional wavelets in Figure
4b, these reflectivity functions model the data as well as do
the more constrained results in Figure 3. The greater number
of variables has increased the nonuniqueness of the model-
ing equation (5). The inconsistent wavelets have been esti-
mated poorly, particularly at large offsets, because the
greater number of overlapping hyperbolas can also model
changes in reflections with offset.

The two extremes of these synthetic examples suggest the
following rule: the more constraints placed on the velocities
of reflections, the easier it is to recognize inconsistent
wavelets at large offsets. (Note that surface-consistent shot
and geophone wavelets affect both large and small offsets in
different midpoint gathers.)

As a compromise, three velocity functions were chosen
about each of the two correct velocities. Other velocities
were excluded from the model. The estimated reflectivity
functions in this case are shown in Figure 5a. Again large
amplitudes exist at incorrect velocities, and again the mod-
eled data are very good. This time, however, the estimated
wavelets in Figure 5b are only slightly inferior to those of the
well-constrained estimate in Figure 3b. A perfect knowledge
of velocities would then seem to be unnecessary to estimate
relative changes in convolutional filtering from trace to
trace.

PHASE-BALANCING DECONVOLUTION

Assuming that the estimated wavelets express relative
changes in phase and amplitude, one can use the wavelets to
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Fic. 5. (a) Estimated reflectivity functions at six velocities
near the correct values. All other traces are constrained to
be zero and are left out of the model. (b) Corresponding
estimated convolutional wavelets. Substantial amplitudes
appear in reflectivity functions at incorrect velocities, but
wavelets now model changes in phase as well as did the more
constrained estimates in Figure 3.

estimate what data would have resulted from a single con-
sistent wavelet (although unknown). Such a process can be
called phase balancing. To invert partially the convolution
with known wavelets, minimize the following damped least-
squares objective function:

2
Min ff [data (h, t) — decon (h, 1) * w(h, I)J dh dt
)

decon(h, 1

2
+ adff{decon (A, 1)] dh dt. (10)

The gradient of this objective function with respect to the
deconvolved data, decon (4, 1), includes a correlation of the
known wavelet with the difference between the original and
modeled data. Again, four conjugate-gradient steps were
used. Figure 6 shows the result of deconvolving the original
data of Figure 2b with the estimated wavelets of Figure 3b.

This deconvolved gather is far from the ideal impulsive
reflections of Figure 2a, but the wavelets are now consistent.
A second spiking deconvolution could use the same wavelet
for all traces. Consistent wavelets are also essential if one is
interested in angular (not convolutional) changes in reflec-
tion coefficients.

One could model almost identical data from consistent
impulsive wavelets and the reflectivity functions in Figure
3a. Deconvolution, however, preserves details that cannot
be modeled in recorded data by superpositions of hyperbo-
las. The 1-D deconvolution is also less likely to create
spurious reflections.

VELOCITY FILTERING

To demonstrate loose constraints on velocities, I use the
recorded marine midpoint gather in Figure 7a (provided by
the Geophysical Research Institute in Zhuoxian, China).
Most of the reflections are sea-bottom primaries and multi-
ples with velocities near that of water. The last strong
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Fi1G. 6. A deconvolution of the data in Figure 2b with the
estimated wavelets in Figure 3b. Reflections are not impul-
sive as in the ideal data of Figure 2a, but wavelets are now
consistent.
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reflection is a peg-leg multiple of the primary reflection
arriving at zero offset at 1.8 s. The strength and phase of
wavelets show some change with offset. Amplitudes of
traces have been scaled over time to compensate for the
effects of geometric spreading and the absorption of energy.

Ten velocity functions were chosen through the sem-
blance contour plot in Figure 7b. The first five functions pass
through the water-velocity reflections (the first is a primary);
the second five pass through higher velocity reflections. The
corresponding reflectivity functions and wavelets were esti-
mated with the same algorithm used for the synthetic exam-
ples. The modeled data appear in Figure 8a. The difference
between Figures 7a and 8a shows the uninverted reflections
in Figure 8b. Higher frequencies were uninverted in the first
arrivals, perhaps because the wavelets were not allowed to
change their spectra with time. Other previously unseen
reflections with high velocities appear in the residuals be-
tween 2 s and 2.5 s. These reflections appear as small peaks
in the semblance panel of Figure 7b, but they were not
included in the velocity functions.

Because the lower and higher velocity reflections are not
of equal interest, I model the data again in Figure 9a with
only the five lower velocity reflectivity functions. Figure 9b
shows the original data minus these low-velocity reflections.
The remaining data contain the high-velocity reflections, as
well as all uninverted reflections. One can now view the
weaker primary reflections without the distraction of water-
bottom reflections.
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REMOVING STATIC SHIFTS BY PHASE BALANCING

The marine-data example emphasizes the use of reflectivity
information to distinguish reflections with different velocities.
Convolutions were necessary only to model reflections with
greater accuracy than do impulsive hyperbolas alone. Land
data are less likely to have multiple reflections than do marine
data; instead, filtering at the earth’s weathered surface is more
likely to create static time shifts such as seen in the midpoint
gather of Figure 10a. (These data were recorded in the Willis-
ton Basin by Western Geophysical.) Traces shifted up or down
contribute destructively to hyperbolic stacks of the data over
offset. The mind’s ability to imagine hyperbolic reflections
makes the static shifts visible to the eye. Similarly, constraints
on the hyperbolic shapes of reflections should help estimate the
wavelets that describe these shifts.

First, I choose a single optimum velocity function for this
gather with a modified version of Toldi’s (1989) 1-D “‘veloc-
ity analysis without picking.”” Then I use four iterations of
the previous algorithm to estimate a single reflectivity func-
tion and convolutional wavelets for each offset. Only the
most important reflections are modeled in Figure 10b by this
reflectivity. Modeled changes in reflection strengths with
offset do not entirely match those of the recorded data; but
the static shifts, our present goal, are modeled well. These
static shifts show up clearly in the estimated wavelets in
Figure 11. When the original gather is deconvolved with
these wavelets (Figure 10c), the resulting reflections are
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Fic. 7. (a) A marine midpoint gather provided by the Geophysical Research Institute in Zhuoxian, China. The last
strong reflection is a peg-leg multiple of the primary reflection arriving at zero offset in 1.8 s. (b) A contour plot of
a semblance velocity analysis of (a). Five chosen velocity functions pass through water-velocity reflections; another

five pass through higher velocity primaries.
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strikingly hyperbolic. A second velocity analysis finds that
the reflections stack much more coherently than before.
How much of this increased hyperbolicity is reliable? The
1-D deconvolutions do not explicitly mix information across
offset, so it should be difficult to create reflections that do not
exist. The time-invariant deconvolutions cannot distort the
curvature of one reflection without distorting the rest as well. If

errors in picked velocities for different reflections cancel each
other, then wavelets will not model residual hyperbolic move-
out. Anyway, I use the same picked velocity functions to stack
(sum) the CMP gathers over offset, so phase balancing will
make these traces stack as coherently as possible.

Figure 12a shows the result of stacking 44 adjacent com-
mon-midpoint gathers. Their velocity functions are
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FiG. 8. (a) Reflections modeled by estimated reflectivity and convolutional wavelets. (b) The difference between
the recorded data in Figure 7a and the modeled data in (a). Reflections with high velocities not included in the model

appear between 2 s and 2.5 s.
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Fic. 9. (a) Reflections modeled only by the five lower velocity functions. (b) The difference between the recorded
data (Figure 7a) and (a). Weaker primary reflections become more visible.
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Fic. 10. (a) A land midpoint gather with strong static shifts from the Williston Basin (provided by Western
Geophysical). (b) Data modeled by a single reflectivity function and the wavelets in Figure 11. (c) A deconvolution

of the data in (a) with the estimated wavelets.

smoothed over midpoint to avoid abrupt changes. After
stacking, traces are shifted vertically to flatten reflections
and remove static shifts over midpoint (also destroying
structural trends).

All gathers are phase balanced by deconvolution with indi-
vidually estimated wavelets and stacked again (Figure 12b).
Although deconvolved traces are renormalized to the strength
of the originals, the stacked traces increase in amplitudes by
about 40 percent. Reflections are cleaner because deconvolved
reflections no longer sum destructively over offset. Each gather
becomes internally consistent over offset, but midpoint-consis-
tent static shifts remain; traces were shifted by the same
amount as the original stack in Figure 12a.

As an alternative to stacking, the estimated reflectivity
functions for each gather are shown in Figure 12c. The reflec-
tion at 2 s has increased dramatically in amplitude with respect
to the other reflections. An extra double peak appears in this
reflection as well. This double peak was visible in the midpoint
gather in Figure 10a (the third trace in the stack), but not in
either stacked section (Figures 12a and 12b). Stacking implic-
itly stretched and blurred the detail of this reflection. On the
other hand, the reflection just before 2.5 s corresponded to an
unreasonably low (multiple?) velocity that was missed by the
velocity function. This reflection weakens in the estimated
reflectivity because the incorrectly moved-out reflection must
still fit data at all offsets.

EXTENSIONS OF THE MODEL

The previous examples ignored some common physical
constraints—surface consistency, the effect of dip on move-
out, and changes in amplitude with time—because they
proved to have negligible effect on estimated wavelets and

reflectivities. These constraints are natural first choices,
however, if the model is to be generalized.

Surface-consistent convolutions of traces are independent
within a single midpoint gather, but nearby midpoint gathers
share many of the same shot and geophone positions [equa-
tion (3)]. A surface-consistent model needs reflectivities and
velocities that are functions of midpoint:

hyps (y, h, 1) =
2J8|:t - \/ t(z) + hz/vjz(y’ tO):|rj(y5 tO) dt()’
J

and

(ﬁ‘az(& g, t) =

wils, 1) * wy(g, 1) * hyp2|:(s + 2)2, (g — ), t}. (11)
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Fic. 11. Estimated convolutional wavelets for each offset of
Figure 10a. Static shifts are plainly visible.
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A damped least-squares objective function similar to equa-
tion (7) defines an estimate of the unknowns, but the shot
and geophone wavelets cannot easily be optimized simulta-
neously. As before, one could alternately estimate reflectiv-
ities and shot and geophone wavelets by holding the other
two sets of parameters constant.

Unfortunately, estimating the smaller set of wavelets for
the land data proved just as likely to model static shifts over
offset and not over midpoint. The first estimate of each
reflectivity function possesses the average static shift of its
midpoint gather; nearby gathers do not influence this esti-
mate at all. Only surface-consistent wavelets, estimated
later, can look at and reconcile inconsistencies between
adjacent gathers. Unfortunately, these wavelets model mid-
point-consistent static shifts surprisingly well. The wavelets
compensate for static shifts of the reflectivity functions and
discourage further improvement.

An alternative extension of our model is to add some
continuity to reflections over midpoint. We do expect con-
tinuity at least over the width of the Fresnel zone, the width
of the tops of diffraction hyperbolas. The reflectivity func-
tion might then be modeled by diffraction modeling of a
migrated reflectivity function (e.g., Claerbout, 1985).

If the effect of dip on stacking velocities (dip moveout) is
included in the model, the migration and stacking velocities
should be the same (e.g., Hale, 1984). Let dipfil;(p, y, 1) be
a dip-filtered version of the reflectivity function, where p =
dty/dy (e.g., Hale and Claerbout, 1983). I define

hyps(y, h, 1) = 2 ZJS[I —\/1+ h¥oi(y, 10)* — thz}
pJ

x dipfil;(p, y, to) dty. 12)
Other parts of the model and least-squares inversion remain
unchanged.

The hyperbolic models (4) and (11) assume incorrectly that
reflection amplitudes are constant with offset before surface
filtering. The spreading of wavefronts and absorption of
energy causes amplitudes to decrease with distance traveled.
The recorded data used in this paper were scaled by the
second power of time [Claerbout (1985) justifies this factor for
a constant-Q material]. Local rescaling of amplitudes (automat-
ic gain control) distorts wavelets and so should be avoided.

The previous models also assume that reflection coeffi-
cients do not change with the angle of reflection. A reflec-
tivity function could model such changes if it were made a
smooth function of the radial parameter h/vt, roughly the
tangent of the angle of reflection from the vertical. A
heterogeneous medium also affects amplitudes at depths
between the surface and reflecting layers. Kjartansson (1979)
explains how such changes depend on offset and midpoint.

CONCLUSIONS

Hyperbolic reflections and convolutional wavelets are
relatively simple models for midpoint gathers, but this struc-
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FiG. 12. (a) A stack of 44 adjacent midpoint gathers. (b) A stack of the same gathers after phase balancing. (c) The
estimated reflectivity functions for the same gathers. Corresponding traces were adjusted equally after processing

to remove equivalent midpoint-consistent static shifts.
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ture is flexible and immediately useful. The reflectivity
functions can be treated as implicitly deconvolved stacked
traces, often the final result of processing midpoint gathers.
The convolutional wavelets model and allow removal of
inconsistent changes in phase from trace to trace—changes
that are usually parameterized as static shifts. The required
velocity functions are the same as those required for stack-
ing; however, the model can include additional velocity
functions to model overlapping reflections with different
curvatures.

When midpoint gathers are processed independently, no
assumptions need be made about changes in structure (re-
flectivity) from midpoint to midpoint. The convolutional
wavelets have no explicit constraints except length. The
convolutional form also avoids the local minima that arise
when pure time shifts skip a cycle. Data need not be sampled
evenly. The objective function gives equal weight to all
recorded offsets and makes no assumptions about unre-
corded data.

On the other hand, convolutional wavelets model only
filtering of reflections near the surface, not at intermediate
depths. For rms velocities to parameterize reflection travel-
times adequately, local velocities must vary slowly. The
reflectivity functions as defined cannot explain any changes
in reflections with offset or angle.

The optimization method allows wavelets to explain only
what cannot be easily modeled by the reflectivity functions.
The reflectivity can model relatively short consistent wave-
lets with a superposition of approximately parallel hyperbo-
las. The absolute phase of estimated wavelets is arbitrary—
probably as close to zero phase as possible. After a phase-
balancing deconvolution, statistical methods could attempt
to estimate a single consistent wavelet for the entire gather.

The more exactly one constrains the velocity functions,
the easier it is to distinguish the contributions of overlapping
hyperbolas and inconsistent wavelets. On the other hand, a
range of velocities allows one to model and suppress less
desirable reflections such as multiples. The structure of the
modeling equations discourages simultaneous optimization
of precise velocity functions.

The least-squares inversion uses only the simplest of
possible statistical constraints. One could encourage sim-
plicity and sparseness in the estimated stacked data, as do
Thorson and Claerbout (1985) or Harlan (1986). Limiting the
number of modeled hyperbolas would enable wavelets to
model more of the phase of short wavelets.

The number of physical parameters can be increased or
decreased as suits the data or application. Gathers can be
processed individually or in groups. Angular changes in

amplitudes, time-adaptive wavelets, and migrated stacks can
all be introduced with new parameters. This paper treats
only two immediate applications of the combined hyperbolic
and convolutional model. Most importantly, these examples
show that the estimation of waveforms, structure, and
velocities need not be pursued independently.
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