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Introduction

First I will provide my own favorite definition of a continuous wavelet trans-
form, which I wrote down in 1986 to rederive the results in Goupillaud et al
[1]. (At the time, I was working down the hall from Pierre Goupillaud.) This
continuous transform seemed much better suited to geophysical and acoustic
applications than certain discrete transforms popular at the time, particularly
Daubechies wavelets. Many wavelets have a broader spectrum than neces-
sary, more suitable for compressing photographic images with sharp edges. A
continuous transform can use simple Gaussian tapered monochromatic waves
(one or multi-dimensional) which maximizes the locality in both time/space
and frequency/wavenumber.

First, I will give the definition of what constitutes a valid “wavelet” for
the transform. Second, the inverse of a wavelet transform will be derived
to demonstrate why the transform works. Next, I will show how a wavelet-
transform of a stretched function can be written as a simple function of the
wavelet-transform of the original unstretched function. Such stretching is very
useful in pseudo-spectral solutions of differential equations with spatially vary-
ing coefficients.

Next I dwell on the original Morlet wavelet, a Gaussian-tapered sinusoid,
to show how resolution can be managed explicitly in both time and frequency
domains.

(This is an expansion of a much older document [2] that stressed the ap-
plication of wavelet transforms to seismic imaging. I have removed the geo-
physical details and have extended the discussion.)

Legal wavelets

I will closely imitate the continuous transform originally provided by Goupil-
laud, Grossman, and Morlet [1]. They provide forward and inverse transforms
for related transforms, but without derivation.
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Use the following Fourier convention to link a wavelet w(t) and its Fourier
transform w̃(s):

w̃(s) =
∫

e−i2πstw(t)dt and (1)

w(t) =
∫

ei2πstw̃(s)ds. (2)

(All integrals with unlabeled extremes are assumed to be over the entire real
line.)

The following integral must exist for a wavelet to be suitable for a contin-
uous transform over all frequencies.

Cw =
∫ 1

|s|w̃(s)ds. (3)

Thus, the spectrum of a valid wavelet must approach a zero value at zero
frequency: w̃(s)/|s|ϵ → 0 as s → 0 for some ϵ > 0.

In fact many useful wavelets (such as the Morlet wavelet) will be non-
zero at zero frequency and will not be valid for an infinite range of frequencies.
Discrete transforms will prefer damped least-squares optimizations rather than
simple integrals for transformations and will not require an analytic constant
for normalization.

This wavelet need not correspond to any specific feature in our data.
Rather, when convolved with data, the wavelet should suppress all but a band
of frequencies. Because of the uncertainty principle, I must balance the nar-
rowness of the bandwidth with the narrowness in time.

I recommend a Gaussian-tapered sinusoid, such as w(t) = cos(2πt)(e−πt2/c2).
Such a wavelet is reasonably compact in both the time and frequency domain.
(The constant c adjusts the relative compactness, within the limits of the
uncertainty principle.)

A valid wavelet can be used in an unfamiliar construction of a delta func-
tion. ∫

w(ut)du = Cw · δ(t). (4)

In effect, this integral says that many wavelets, stretched uniformly over all
scales, will sum destructively everywhere but at t = 0.

Proof :
∫

w(ut)du =
∫

{

∫ 1

|u|w̃(
s

u
)ei2πstds

}

du . . . (5)

Change variables from (s, u) to (s′ = s, u′ = s/u). The Jacobian is
∂(s, u)/∂(s′, u′) = |s′/u′2|. Thus,

∫

w(ut)du =
∫ ∫
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∣

s′

u′2

∣

∣

∣

∣

∣

ds′du′ (6)



Notes on continuous wavelet transforms — W.S. Harlan 3

=
∫ ∫ 1

|u′|w̃(u
′)ei2πs

′tds′du′ (7)

=

{

∫ 1

|u′|w̃(u
′)du′

}

·
{
∫

ei2πs
′tds′

}

(8)

= Cw · δ(t). (9)

Here, I use the familiar Fourier definition of a delta function, with the same
restrictions.

The constraint of symmetry will also simplify the definition of a wavelet
transform in the following section, but this assumption is optional:

w(t) = w(−t). (10)

Forward and inverse transforms

Define a wavelet transform F (u, a) of an L2 function f(t) by the following

F (u, a) =
∫

w[u(a− t)]f(t)dt. (11)

This transform decomposes the function as a function of position a and local
frequency u. When calculated discretely, the sampling need not be uniform
over a and u, but the weights should reflect the above integration.

Goupillaud et all [1] prefer 2u or u−1 instead of u as the stretch factor.
If you prefer an asymmetric wavelet, then you must use two transforms—the
above, and the integral with the time-reversed wavelet.)

I find the following inverse, which simply scales and sums the transform
with uniform weight over local frequency u:

f(t) = C−1
w

∫

F (u, a = t)du. (12)

Proof : C−1
w

∫

F (u, a = t)du = C−1
w

∫
{
∫

w[u(t− t′)]f(t′)dt′
}

du (13)

= C−1
w

∫
{
∫

w[u(t− t′)]du
}

f(t′)dt′ (14)

= C−1
w

∫

Cwδ(t− t′)f(t′)dt′ (15)

= f(t). (16)

Here I make use of equation (4).
Most all these equations were implicit in Goupillaud et al [1], although I

personally found it nontrivial to fill in the missing derivation of the results. I
was also happy to stumble on equation (4), which continues to fascinate me.
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Stretching

One application that frequently appears is a differential stretching of a func-
tion.

We will write
g(τ) = f [t(τ)]. (17)

The stretching function t(τ) gives the input coordinate t as a monotonically
increasing function of the output coordinate τ . Moreover, I will assume that
the stretching function can be well approximated locally by a straight line.

t(τ) ≈ t(τ0) + (τ − τ0) ·
dt

dτ
(τ0) and (18)

τ(t) ≈ τ0 + [t− t(τ0)] ·
[

dt

dτ
(τ0)

]

−1

. (19)

Define forward and inverse wavelet transforms of g(τ) with the same wavelets
as in definition (11) and inverse (12).

G(v, b) =
∫

w[v(b− τ)]g(τ)dτ and (20)

g(τ) = C−1
w

∫

G(v, b = τ)dv. (21)

We would like to be able to express the transform G(v, b) as a simple function
of F (u, a). The approximation (18) allows us to write

G(v, b) ≈
∣

∣

∣

∣

∣

dt

dτ
(b)

∣

∣

∣

∣

∣

−1

F







u = v ·
[

dt

dτ
(b)

]

−1

, a = t(b)







. (22)

We can perform an equivalent stretch on the transformed input by stretching
the position a, and by scaling the local frequency u. Both operations require a
simple two-dimensional mapping of the transformed function. The amplitude
must be scaled as well.

Proof : G(v, b) =
∫

w[v(b− τ)] · f [t(τ)]dτ (23)

≈
∫

w[v(b− τ)] · f
[

t(b) + (τ − b) · dt
dτ

(b)

]

dτ . . . (24)

Substitute the variable of integration:

t′ ≡ t(b) + (τ − b) · dt
dτ

(b) and (25)

τ = b+ [t′ − t(b)] ·
[

dt

dτ
(b)

]

−1

. (26)
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Thus,

G(v, b) =
∫

w







v · [t(b)− t′] ·
[

dt
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]
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· f(t′) ·
∣

∣

∣

∣

∣
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∣

∣

∣
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∣

−1
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=

∣

∣

∣

∣

∣
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∣

∣

∣

∣

−1
∫
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v

[

dt

dτ
(b)

]

−1

· [t(b)− t′]







· f(t′)dt′ (28)

=

∣

∣

∣

∣

∣

dt

dτ
(b)

∣

∣

∣

∣

∣
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u = v ·
[

dt

dτ
(b)

]

−1

, a = t(b)







. (29)

The symmetry of w(t) was not necessary here.
Equation (22) is the result which allows us to perform the stretch directly

on the wavelet-transformed function.

Morlet wavelets

A preferred standard wavelet is the Morlet wavelet [1], constructed from a
symmetric cosine tapered by a Gaussian.

m(t) ≡ mg(t)mc(t), (30)

where mg(t) ≡ e−π(s̄t/h)2 (31)

and mc(t) ≡ cos(2πs̄t), (32)

so m(t) = e−π(s̄t/h)2 cos(2πs̄t). (33)

The constants s̄ and h do not vary during a wavelet transform. If we take the
dimension t as units of time in seconds, then s̄ is the central frequency of the
wavelet in hertz. The “half-width” h controls the relative width of the taper
in wavelengths.

The cosine has a base frequency of s̄ and a wavelength of 1/s̄. The inclusion
of a variable s̄ for central frequency is just a convenience for managing units; s̄
can be set to a constant without loss of generality. When we scan frequencies
with a wavelet transform (11), we can set s̄ to 1 and substitute u as frequency.

The envelope has a peak value of 1 at t = 0 and drops to approximately
half of this value at a separation of h wavelengths.

mg(0) = 1; (34)

mg[h/(2s̄)] = mg[−h/(2s̄)] (35)

= exp(−π/4) ≈ 0.456. (36)

And so we call h the half-width, in wavelengths, of the Gaussian taper.
The integral of the Gaussian envelope in time t is

∫

mg(t)dt =
∫

e−π(s̄t/h)2dt =
h

s̄
, (37)
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Figure 1: Morlet wavelet with central frequency of s̄ = 0.25 and half-width
h = 4.

equal to the half-width in units of time.
As an example, figure 1 shows one Morlet wavelet. We assume a time

sampling interval of 1 for a maximum Nyquist frequency of 0.5. We choose a
central frequency of s̄ = 0.25, and a halfwidth in wavelengths of h = 4. We can
see that one wavelength is 1/s̄ = 4 time samples in length. The positive lobes
at times of t = ±8 (third most positive values) are half the height of the peak.
These half-strength peaks are separated by four wavelengths, as appropriate
for h = 4. The two peaks are also 16 time samples apart, as appropriate for
four wavelengths of 4 samples each (h/s̄ = 4/0.25 = 16).

We can take the Fourier transform (1) of the Gaussian envelope as

m̃g(s) ≡
∫

e−i2πstmg(t)dt =
∫

e−i2πste−π(s̄t/h)2dt (38)

=
h

s̄
e−π(hs/s̄)2 . (39)

The equivalent half-width of this Gaussian is s̄/h, approximately spanning the
range of values more than half of the peak value. This half-width s̄/h in units
of frequency is just the reciprocal of the half-width h/s̄ in units of time.

Notice that the frequency half-width is directly proportional to the refer-
ence frequency s̄. As we scan frequencies with a wavelet transform, we will see
lower frequencies resolved with narrower ranges of frequencies. The resolution



Notes on continuous wavelet transforms — W.S. Harlan 7

is constant in the log of frequency, which is why Morlet recommends sampling
frequencies geometrically in octaves rather than linearly in frequency. When
we construct a discrete basis of these wavelets for a discrete transform, there
is no need to sample frequencies much more densely than this half-width.

The Fourier transform of the cosine is

m̃c(s) ≡
∫

e−i2πstmc(t)dt =
∫

e−i2πst cos(2πs̄t)dt (40)

=
1

2
δ(s+ s̄) +

1

2
δ(s− s̄). (41)

The Fourier transform of the Morlet wavelet is the convolution of these two
functions, for

m̃(s) ≡
∫

e−i2πstm(t)dt =
∫

e−i2πstmg(t)mc(t)dt (42)

= m̃g(s) ∗ m̃c(s) =
∫

m̃g(s
′)m̃c(s− s′)ds′ (43)

=
h

2s̄
e−π[h(s+s̄)/s̄]2 +

h

2s̄
e−π[h(s−s̄)/s̄]2 . (44)

This gives us two Gaussians centered on the central frequency and mirrored
on each side of zero.

Figure 2 shows the Fourier transform of the Morlet wavelet in figure 1, also
with s̄ = 0.25 and h = 4.

The resolution we care about is the narrowness of the spectrum about the
central frequency s̄. If we measure the standard deviation of one side of the
Fourier transform (44), we are effectively measuring the width of the Fourier
transformed envelope (39):

For quantifying resolution tradeoffs, a useful measure is the normalized
second moment, or dispersion, in each domain. In time, the integral of the
squared Gaussian taper is

∫

|mg(t)|2dt =
∫

e−2π(s̄t/h)2dt =
1√
2

h

s̄
, (45)

and the second moment is

∫

|mg(t)|2t2dt =
∫

e−2π(s̄t/h)2t2dt =
1

4
√
2π

h3

s̄3
. (46)

So the normalized second moment is

∆2t =

∫ |mg(t)|2t2dt
∫ |mg(t)|2dt

=
1

4π

h2

s̄2
; (47)

∆t =
1

2
√
π

h

s̄
. (48)
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Figure 2: Fourier transform of Morlet wavelet in figure 1 with central frequency
of s̄ = 0.25 and half-width h = 4.

Similarly we can measure second moments in the frequency domain.

∆2s =

∫ |m̃g(s)|2s2ds
∫ |m̃g(s)|2ds

=
1

4π

s̄2

h2
; (49)

∆s =
1

2
√
π

s̄

h
. (50)

The uncertainty relation for resolution in time and frequency simplifies to

∆s∆t =
1

4π
. (51)

This inverse relationship is independent of both the half-width h and the cen-
tral frequency s̄. The half-width in wavelengths h controls the width of resolu-
tion in each domain, but cannot change this product of two widths. Improving
the resolution in one domain necessarily reduces the resolution in the other. If
we double the width of the envelope in the time domain, then we necessarily
halve the width in the frequency domain.
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