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Some ways to program as a geophysicist

▶ Avoid it. Borrow code. Find partners. Use Matlab.

▶ Become a guru/sysadmin. Help others publish first.

▶ Concentrate on numerics. Fortran. One program per dataset.

▶ Build a personal library. Generalize your code for reuse.
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Learn fundamentals deliberately, not as you go

▶ Take a course, read books
▶ Data structures, algorithms, object-oriented, functional

▶ Learn as a branch of math, not engineering.
▶ Concentrate on reusable abstractions, not popular toolkits.
▶ Master simplicity, not complexity.

▶ Do not get carried away.



Learn best software practices

▶ Show and share

▶ Source control

▶ Tests

▶ Small changes (refactoring)

▶ Appropriate generalization



Examples of generalization/abstraction

▶ Seismic data objects with flexible dimensions

▶ Separate velocity models from ray tracers

▶ Different imaging conditions with different extrapolators



Typical geophysical inversions

▶ Data simulated by series of non-linear operations

▶ Inversion is both over- and under-determined

▶ No model parameters fit data perfectly

▶ Many models fit data equally well

▶ Non-linearity is well-behaved



Sensitivity of interval velocity to RMS errors



Dix inversion

▶ Forward equation cannot fit arbitrary data:
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▶ Explicit inverse may not be physical:
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▶ Instead minimize damped least-squares:
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Damp interval velocity roughness



Defining an inversion

▶ Do not define your solution by the way you solve it.

▶ Want to improve the solution without redefining the problem.

▶ Instead, identify an objective function (or probabilities).
E.g., define rays by minimum time.



Lomask’s flattening, redone

▶ Estimate vertical stretch that flattens reflections.

▶ Original: Custom regression, phase-unwrapping

▶ New version: A few hundred lines of code specific to inversion

▶ JTK reused: structure tensors, Gaussian filters, Gauss-Newton



Local dips from structure tensors



Estimated vertical shifts in color



Flattened with vertical shifts



The problem, the data, and the solution

Flatten seismic structure with vertical shift τ(x , y , t):

flat(x , y , t) = structure[x , y , t + τ(x , y , t)].

Data are slopes px , py measured from structure tensors.

Want ∂
∂x
τ(x , y , t) ≈ px(x , y , t)

and ∂
∂y
τ(x , y , t) ≈ py (x , y , t).
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Looks like damped least-squares

The best model m fits the data d with a function f(d) by
minimizing the vector norms

∥d− f(m)∥2d + ∥m∥2m

or [d− f(m)]∗ C
˜

−1
d [d− f(m)] +m

∗
C
˜

−1
m m.

Optional covariances:

C
˜
d ≡ E (dd∗) and C

˜
m ≡ E (mm

∗).



Gauss-Newton inversion

▶ Finds m to minimize

[d− f(m)]∗C
˜

−1
d [d− f(m)] + [m−m0]

∗
C
˜

−1
m [m−m0]

▶ Algorithm:

1. Accepts starting model m0

2. Approximates f(m0 +∆m) ≈ f(m0) + F
˜
·∆m

3. Conjugate-gradients minimizes quadratic for ∆m

4. Line search scales perturbation: m0 + α∆m

5. Adds perturbation to reference model for new m0

6. Returns to step 2



Required operations

▶ Simulate data from model:
d = f(m)

▶ Perturb data with model perturbation:
∆d = F

˜
(m0) ·∆m ≈ f(m0 +∆m)− f(m0)

▶ Perturb model with transpose:
F
˜
(m0)

∗ ·∆d



What is that transpose?

Use definition: d∗(F
˜
m) ≡ (F

˜

∗
d)∗m

▶ Discrete: swap summations

▶ Continuous: integrate by parts

Examples:

▶ Smoothing → Smoothing

▶ Convolution → Correlation

▶ Derivative → Negative derivative

▶ Plane-wave modeling → Slant stacks

▶ Seismic modeling → Migration



Inversion sees three abstract operations

Vector data = forward(Vector model)

Vector data = linearized(Vector model, Vector refModel)

Vector model = transpose(Vector data, Vector refModel)



Required operations for both data and model

Vector {

scale(float scalar) [required]

add(Vector other)

dot(Vector other)

multiplyInverseCovariance() [optional]

applyHardConstraint()

}



Constrained Dix inversion

▶ Solve for smooth interval slowness m.

▶ Minimize errors in squared stacking slowness d

▶ Forward transform:

1/dj = (1/j)
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▶ Linearized transform:
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▶ Transpose transform:
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Other applications

▶ Tomography: reflection, cross-well, diving, amplitude

▶ Generalized Radon transforms

▶ Surface-consistent deconvolution

▶ Normal moveout corrections

▶ Automatic moveout picking

▶ Coherency, wavelet/phase attributes

▶ Tests for simulations



Conclusions

▶ More time on “computer science” quickly saves time

▶ Look for opportunities to generalize





Alternative to covariance

▶ Insert simplification filter d = f(S
˜
·m)

where S
˜

∗
C
˜

−1
m S

˜
≈ I
˜

▶ If C
˜

−1
m ·m roughens, then S

˜
·m smooths.

▶ Faster than covariance constraint

▶ Can change dynamically during optimization


