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Least-squares and pseudo-unitary migration
William Harlan and Chuck Sword

THE PROPERTIES

Stolt (1978) defined a constant-velocity migration equation in his first paper on the
subject, but did not define a corresponding modeling or “diffraction” equation. The
choice has not been entirely obvious. A simple physical argument leads to one choice;
numerical concerns lead to another. We shall see that a diffraction that is the adjoint of
Stolt migration corresponds to a simple, easily interpreted Green’s function. On the
other hand, a diffraction that is the least-squares inverse of migration reconstructs the

data most accurately.

Rather than choose a single migration, let us choose a linear modeling equation
whose physical assumptions appeal to us. Then we can choose desirable properties for
the corresponding migration. This paper will not debate the respective merits of various
linear modeling programs. Too many questions must be asked first. Is the source isotro-
pic, zero-phase? Do the receivers measure displacement or pressure, vertically or isotrop-
ically? What physical parameters are we perturbing—impedances, velocities, moduli, or
reflection coefficients? And so on. Once we have a linear equation that creates data
from the model, we can choose a mapping from our data to the model, to be called
migration.

Programmers tend to choose a migration that is a generalized inverse of diffraction,
most often, the least-squares inverse. This choice restores the original data as well as
possible from a diffraction. The two operations can be repeated over and over again,

without destroying information or degrading the data.

On the other hand, linear perturbation theory encourages a migration that is the
adjoint of diffraction. For example a diffraction might find the first-order linear pertur-

bation of a wavefield recorded on the surface due to the perturbation of a buried source

SEP-48



Harlan and Sword 128 Least-squares and unitary migration

(a non-physical source is the so-called “exploding reflector”). An adjoint migration
solves the linearized control problem: find the perturbations of buried sources that will
explain non-zero perturbations of the data. Calculate the data perturbations
corresponding to each buried source, and sum them all together. Such an approach is
typical of Born methods. The forward transformation corresponds to a matrix of
Frechet derivatives that linearize the physical modeling of the data. Reversing the direc-

tion of perturbations merely transposes the matrix.

I shall begin with the adjoint migration and then derive a least-squares alternative.
G (2 ,7) be the earth model, a function of horizontal and vertical spatial coordinates, z

and 7=depth /velocity . Let D (a,t) be the corresponding data, a function of z and

time £ .
D =WG; MD=W'D . (1)

where W is diffraction, and M is an adjoint migration. The asterisk indicates the
adjoint (or transpose of real matrices). If M corresponds to Stolt’s original definition of
migration, then W will correspond to the familiar spherical, isotropic Green’s function.

However, the adjoint migration M is a suboptimum inverse, as we shall see.

When implemented in the frequency domain, the adjoint Stolt transformations des-
troy certain information: 1) D may contain noise at high dips, requiring imaginary fre-
quencies in G, frequencies which we do not save; 2) Stolt diffraction does not sample the
depth-frequency axis &, sufliciently when discrete transforms are used, with the result
that late diffraction hyperbolas wrap around to the top—migration treats these wrap-
arounds as shallow events. Both D and G may contain information not expressed in the
other domain. The second limitation may be ignored by padding zeros onto geologic
models. We shall examine integral transforms, so only the first limitation will appear

explicitly. Thus diffraction may be exactly inverted, but not migration.

Again, let us begin by assuming knowledge of the forward modeling operator, W
(diffraction). In particular let this diffraction be the same as used in equation (1) (the
adjoint of Stolt’s original definition of migration). Let the least-squares migration, M, ,

be the left inverse of W, where
M, W =1, (2)
but W M, = A £ L (3)

I is the identity operator; A is an operator with zeros and ones on the diagonal in the
frequency domain. Thus migration can invert diffraction but not vice versa. The solu-

tion of D = WG for G is an over-determined problem. The least-squares solution for
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G given W and D defines migration as
G =[(W"WyY'W*ID =M,D , (4)
We shall show that our chosen diffraction and its least-squares migration satisfy
M, = B;W", where B is diagonal over k, and k, and is invertible, (5)
and W = B,M,, where B, is diagonal over k, and w and is not invertible.  (6)
In the frequency domain the diagonal elements of B; and B, are real and contain the
so-called cosine corrections. Except for these corrections, least-squares migration is the

adjoint of forward modeling. Equations (2) and (5) being satisfied by Stolt’s migration

and diffraction directly shows (4) to be satisfied—migration is a least-squares solution of

(1).

DEMONSTRATION OF THE PROPERTIES
Let G and D be the Fourier transforms of G and D . Let W and M be the usual
Stolt transforms in this new domain.
M = FMF* W = FWF*® (7)

F is the forward Fourier transform. Let the adjoint migration be equivalent to Stolt’s

definition migration.

MD=W'D (8)
-k -

= J OT| > [ D(w, k)8(w-sign (k)\/v2k2+k}? )dw.
Vuik, 4+ kS -

v is the constant velocity. The cosine factor before the integral may be regarded as a

diagonal operator over k, and k,. Recall that

5/ (x»:zl—f,—l(—;-)—ré(x ~ ),

where z, are the zeros of f (2 ). The adjoint of M corresponds to a common definition

of diffraction:
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whk,)=W G =M"G (9)

0
= H(w® - v2k,> f )6(k ~sign (W)/w® — v2k,2) dk,
-0

D

—_—

1 z2>1
where H(z)=1 z <1

The derivative of the argument of the delta function and the cosine factor have neatly

canceled. The Heaviside function H (2 ) is necessary because (8) transforms only to real

k

-

Stolt did not define a diffraction algorithm in his original paper, but equation (9) is
a very appealing choice. This modeling equation corresponds to isotropic pressure
sources at depth at isotropic receivers at the surface. Equation (9) implements the fami-
liar spherical Green’s function. Let us choose this diffraction as the fixed transformation

and find an alternative migration as its least-square’s inverse. We propose the following:

o0
G (ko k, ) = D f D (w, ky )8(w—sign (k )y /v, + k2 ) dw. (10)
—00

Notice that this definition contains no obliquity or cosine factor. The adjoint of the

least-squares migration is

M:Zr’-z d H(w? - v2k,?

5,2
- F
\/w§ vk

§(k ~sign (W)\/w® - vk, dk, .

8“%8

We observe that

but
W M,D(w, k,) = H(«* - v2k,)D (w, k). (13)

We have verified (2) and (3): diffraction is invertible, migration is not. Let

B,=FB,F~ B,=FB,F" . (14)
Then we observe that
M, =B,W" =B ,M W =M" = B,M, (5,6a)
where
B,— AJIF Y By= W“|;l|)-k12H(w2 - %Y. (15)
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The above transform easily into (5) and (6). Because F' is unitary, minimizing the sum
of the squares is equivalent in either domain. Now we may prove that our chosen M, is
in fact the least-squares inverse of diffraction. By (2) and (5)

BW'W=MW=I — W'W =581 16
1 Is 1

- (W'WYlW* =B,W" =M, .

PSEUDO-UNITARY MIGRATION

In our derivation of a least-squares migration, we admitted that the physical
G (7 ,t) had some arbitrariness. It is not a physical object. (It is only a generic measure

of “reflectivity” convolved with a spiked wavelet.)

Instead let us construct a W whose adjoint is also the left inverse of W . Redefine

the model with the transformation S :

D—WG&G— Wss'G —W,a, : (17)
where W, =W S and G, = S'@

We want the transpose of W, to be the left inverse of W,: W, W, =1 . We also

require:

W'D . G, — W'D (18)

G, =871 =S YW WY'W'D =S*"W'D (19)
implies — 88" = (W' W)!=5,
The above is satisfied when
S = +/B; (20)
Construct the unitary diffraction as follows:
D(w k)= W, G (21)

[2 o2k, 2

The transpose and least-squares inversion define the migration:

1 00
_ [_Iil_r[{(cﬁ_ 02,2 [ Tk, ky )8(k ~sign (w)y/<? — v7k,%) dk,
-00

Gk, k,)=M,D =W, D (22)

lo|r~4

o0
f D (w, ky )o(w-sign (k )\ /v2k,> + k2 )dw.
-0
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W, 1s unitary because W:Wu == [ . The migration should be called pseudo-unitary
because W, W, = M,’M, = A, where A is diagonal and contains only ones and zeros.
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