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Introduction

I first implemented this method of automatic picking in 1987-88 while work-
ing at the Osservatorio Geofisico Sperimentale in Trieste Italy and at Stanford
University as a visiting scholar. The implementation was an obvious applica-
tion and simplification of the work of John Toldi [1] [2] which I had closely
followed for several years. That implementation was in a computer language
I now try to forget.

Over the years, I applied that algorithm to many varieties of data, including
noisy data with weak reflections, with large lateral velocity anomalies, and with
residual moveouts after prestack time or depth imaging. I’ve rarely resorted
to hand-picking tools except as a Q.C. tool for this algorithm.

Recently I reimplemented this method to take advantage of a newer C++
Gauss-Newton optimization algorithm, with fewer restrictions on the number
of spatial dimensions. But the numerical properties are exactly the same.

The objective function

First one must perform a stacking velocity analysis to construct a hypercube
of stacking semblances S(m,x) as a function of a moveout parameter m and
dimensions x including zero-offset time and a spatial X and Y.

The moveout parameter should be chosen so that resolution is approx-
imately constant for large or small moveouts. I prefer to use the squared
reciprocal of a conventional stacking velocity. That moveout parameter also
conveniently includes flat or negative moveouts.

The goal of this algorithm is to find a smooth surface m(x) that gives
a single-valued moveout as a function of all coordinates. The surface has a
limited number of degrees of freedom to make the surface stiff. The best
surface maximizes the integral of the semblance over all coordinates.

max
m(x)

∫
S[m(x),x]dx (1)
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This is essentially the same objective function as used by John Toldi, but
without his tomographic constraints on moveout. I assume that stiffness and
hard bounds alone will be sufficient to keep the moveouts reasonable. Zhang
Lin [3] similarly dropped Toldi’s physical constraints, but made more exten-
sive changes to the objective function and optimization. I make no significant
changes to Toldi’s objective function. I use a very conventional Gauss-Newton
optimization, with Toldi’s iterative smoothing and relaxation to ensure con-
vergence.

Motivation

Stiffness prevents the moveout surface from jumping easily from primary re-
flections to a multiple and back again. Hard bounds may be necessary in
areas where multiples and other coherent noise are more common than pri-
maries. A hard constraint is implemented by simply muting that part of the
semblance that falls outside an allowed range. Ranges of moveouts can be
specified relative to reference moveouts, or independently.

The moveout surface is stiff over all spatial dimensions, including time.
This allows more redundancy over more dimensions than available to a human
interpreter. A surface integral includes the contribution of many weak reflec-
tions rather than just the few strong reflections visible to the eye on a contour
plot.

Weak lateral velocity anomalies can cause stacking “velocities” to swing
wildly by 50% or more as inner and outer offsets are delayed relative to each
other. A human interpreter will reject such swings as unphysical, although the
characteristic signature of such anomalies can be seen clearly when neighboring
ensembles are included. An automatic picker sees more data and finds the
swings are essential for consistency.

Some automatic pickers attempt first to identify peaks and fit them second.
Unfortunately all such peaks influence the final result, even when they are
inconsistent with neighbors. An integral, on the other hand, does not increase
the penalty of moving farther from a multiple once the peak has been found
inconsistent.

Optimization

A Gauss-Newton algorithm finds model parameters that best fit some data
after a non-linear transform. This particular objective function does not look
like an inversion at first glance: we have an objective function and a model,
but no data. Let our data be a single value that represents the maximum
normalized integral of semblances.

A Gauss Newton algorithm requires three transforms.
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First we need a full non-linear calculation of the data from the model.
Forward integrate semblance S(m,x) over moveouts m and positions x:

d =
∫
S[m(x),x]dx. (2)

Next, we need a linearized perturbation of the data ∆d for a perturbation
of the model ∆m – i.e. a gradient:

∆d =
∫

∂
∂m

S[m(x),x] ∆m(x)dx. (3)

Finally, we need the adjoint of the linearized forward transform:

∆m(x) = ∂
∂mS[m(x),x] ∆d. (4)

Set data d to the maximum possible normalized sum and plug into your favorite
Gauss-Newton solver.

Actually, the conventional solver requires one modification. In early it-
erations, the moveout surface is far from the optimum peaks. The surface
needs to be close enough to a peak for the gradient to push the solution in
the correct direction. Fortunately, John Toldi had a clever solution. In early
iterations the surface should be extremely stiff with perhaps only a few basis
functions over the range of each dimension. The semblance cube should be
heavily smoothed in the direction of the moveout parameter — up to half the
allowed range of values in the first iteration. The locations of the peaks are
less accurate but the surface always finds itself on a broadened flank with the
gradient pointing in the correct direction. After this small number of degrees
of freedom has been allowed to converge, then later iterations can reduce the
smoothing and increase the number of basis functions. In the final iteration,
the semblance volume is not smoothed at all, and the surface is as flexible as
the user allows.
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