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Introduction

Tying seismic sections with well picks typically requires estimating a source
wavelet from a sonic log. Few want to repeat this effort for each dataset
with different recording parameters. Each frequency of a source wavelet can
have a different amplitude and phase. A typical phase rotation or amplitude
scaling does not change with frequency and cannot make one arbitrary wavelet
look like another. Instead we should estimate different wavelets directly from
cross-correlations of all intersecting datasets.

A collection of independent seismic surveys, 2D lines or 4D vintages, inter-
sect each other, but reflections do not overlay well. Seismic attributes differ
and complicate any stratigraphic interpretation, particularly of thin beds. We
want to apply wavelet corrections to each of these datasets so that intersections
tie as well as possible.

One approach was independently implemented by David Mackidd of En-
Cana, and by Bishop and Nunns [1]. This approach cross-correlates traces
from different surveys near intersection points. From these cross-correlations
are extracted time shifts, phase rotations, and scale factors by least-squares
means. Bulk phase-rotations require care with phase-unwrapping, and time
shifts are not independent of phase. These limited corrections may be robust
in the presence of defective spectra, but at the cost of ignoring arbitrary phase
and amplitude changes with frequency.

Instead, we take the approach of Henry and Mellman [3], and invert cross-
correlations directly for arbitrary wavelets. This problem is very similar to the
more-familiar problem of surface-consistent deconvolution (Levin [4]), which
solves for prediction-error filters. I have implemented a variation on both. I
solve the same wavelet equalization problem as Henry and Mellman, but with
a non-quadratic objective function more like surface-consistent deconvolution,
and with the Gauss-Newton optimization of Harlan [2].
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Cross-correlations

Let us index independent seismic lines or datasets by indices i and j. Certain
pairs of lines cross at intersections indexed by m. Each m will index a triplet
of indices {m, i, j}. At each of these intersections m, a representative trace
dmi (t) from line i will be cross-correlated with a trace dmj (t) from line j, all as
a function of time t. Let us define the cross-correlation cmij (t) as a function of
lag time t by

cmij (t) =
∫
dmi (τ − t)dmj (τ)dτ (1)

=
∫
dmi (τ)d

m
j (τ + t)dτ (2)

= dmi (t) ⋆ d
m
j (t) (3)

= dmi (−t) ∗ dmj (t). (4)

Here the star ⋆ is a concise notation for correlation, and the asterisk ∗ for
convolution.

Typically cross-correlations will be averaged from multiple traces, but I
will assume a single trace in the derivation of a solution.

The model

Assume that a data trace dmi (t) is a convolution of a short wavelet wi(t) that is
specific to the line i with a reflectivity rm(t) that is specific to the intersection
point m. Also assume additive noise nmi (t) that is specific to the trace:

dmi (t) =
∫
rm(t− τ)wi(τ)dτ + nmi (t) (5)

= rm(t) ∗ wi(t) + nmi (t). (6)

Assume the reflectivity is white:

rm(t) ⋆ rm(t) = Rmδ(t), (7)

where Rm is a constant, and δ(t) is an impulse function.
Assume noise nmi (t) is uncorrelated with anything else:

nmi (t) ⋆ n
m
i (t) ≡ N(t). (8)

nmi (t) ⋆ n
m
j (t) = 0, ∀i 6= j. (9)

nmi (t) ⋆ r
m(t) = 0, ∀i. (10)

nmi (t) ⋆ wj(t) = 0, ∀i, j. (11)
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A correlation of two traces can then be rewritten as

cmij (t) = dmi (t) ⋆ d
m
j (t) (12)

= [rm(t) ∗ wi(t) + nmi (t)] ⋆ [r
m(t) ∗ wj(t) + nmj (t)] (13)

= [rm(−t) ∗ wi(−t) + nmi (−t)] ∗ [rm(t) ∗ wj(t) + nmj (t)] (14)

= [rm(−t) ∗ wi(−t) ∗ rm(t) ∗ wj(t)] + [nmi (−t) ∗ nmj (t)] (15)

= [rm(t) ⋆ rm(t)] ∗ [wi(t) ⋆ wj(t)] + [nmi (t) ⋆ n
m
j (t)] (16)

= Rm[wi(t) ⋆ wj(t)] + δi−jN(t). (17)

We will only examine cross correlations where i 6= j, so the discrete delta
function δi−j will be 0.

The objective function

Thus far the assumptions are very similar to those of Henry and Mellman
[3]. They use time shifts as separate parameters so that their short wavelets
are centered around zero-lag. Their objective function also measures differ-
ences between third-order convolutions of measured correlations with wavelets.
These higher-order terms are easier to optimize with least-squares, but dis-
tribute errors more unpredictably.

I prefer to use longer wavelets to avoid a separate parameterization of
time shifts. I directly minimize errors in cross-correlations modeled from the
estimated wavelets. The objective function finds the collection of wavelets
wi(t) and scale factors Rm that best minimize

min
wi(t),Rm

∑
{m,i,j}

∫
{cmij (t)− Rm[wi(t) ⋆ wj(t)]}2dt+ ǫ

∑
i

∫
[wi(t)]

2dt. (18)

Sum over the triplets of indices. The damping suppresses unnecessary fre-
quencies that do not contribute significantly to the cross-correlations. The
damping factor ǫ is an appropriate ratio of expected variances for noise to
that of wavelets. Conservatively small values are sufficient for stable inverses.
I set the variance of a wavelet sample to 1000 times the variance of a sam-
ple of noise, but this ratio can vary orders of magnitude without significantly
affecting the result.

If reflectivities have reasonably consistent strengths, then one can safely
set all scale factors Rm to 1. This implementation makes this assumption.

Optimization

This objective function is a non-quadratic function of the wavelets wi(t), but it
is very amenable to a Gauss-Newton algorithm that iteratively approximates
the objective function as a quadratic.
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Initialize all wavelets to delta functions. Linearize a perturbation of mod-
eled cross-correlations ∆cmij (t) with respect to perturbed wavelets ∆wi(t):

∆cmij (t) ≡ Rm[wi(t) + ∆wi(t)] ⋆ [wj(t) + ∆wj(t)] (19)

− Rm[wi(t) ⋆ wj(t)] (20)

≈ Rm[wi(t) ⋆∆wj(t) + ∆wi(t) ⋆ wj(t)]. (21)

With this linearization, and its linear adjoint, the objective function becomes
a least-squares (quadratic) function of the wavelet perturbations. We can use
a standard conjugate-gradient algorithm to solve for the wavelet perturbations
that best fit the correlations not yet modeled by reference wavelets. Pertur-
bations are scaled appropriately (by performing a line search on the original
objective function) before adding to the reference wavelets.

Correction of data with estimated wavelets

We can imagine using estimated wavelets directly for least-squares deconvo-
lution of each line. This would however unnecessarily attempt to whiten the
frequency spectra. Most likely, the data are already whitened as much as de-
sired. We also do not want to compute inverse wavelets explicitly, which would
amplify some otherwise very weak noisy frequencies.

To avoid unnecessary alteration of the spectral color, we want to reconvolve
all deconvolved traces by a wavelet for a preferred reference line. This reference
line may also be one that has been carefully tied to sonic logs or formation
tops by synthetic seismograms. If more than one line is constrained, then I
share the same wavelet for all during optimization. The estimated wavelet for
these constrained lines is set aside as the reference wavelet.

For each of the unconstrained lines I solve for a transfer function mapping
the estimated wavelet to the reference wavelet, again with least-squares damp-
ing. Finally the estimated transfer functions are convolved with the original
data, combining the effects of deconvolution and reconvolution.

We can also use the estimated wavelets for each line to extract simpler
corrections, such as a bulk time shift, instantaneous phase rotation, and a
scale factor, as did Bishop and Nunns [1]. These limited corrections should
be more stable and less sensitive to noise. Extracting phase corrections from
estimated wavelets is also more robust than fitting phase shifts picked from
the data. But for any frequencies shared by intersecting lines, we know we can
do better and detect more arbitrary differences.

It is possible that certain lines will contain frequencies not present in
any intersecting lines. These isolated frequencies will be absent from cross-
correlations. A damped least-squares fit to cross-correlations will omit these
frequencies from the estimated wavelet. To retain these frequencies, we can



Cross-balancing intersecting surveys — W.S. Harlan 5

include autocorrelations as well as cross-correlations in the optimizations. A
final correction to a reference wavelet may remove the isolated frequencies
again.
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