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Preliminaries

Begin with conservation of momentum for a continuous medium:

ρ(x
˜
) · üj(x

˜
, t)− τjk,k(x

˜
, t) = Fj(x

˜
, t), (1)

where t is time, and x
˜
(with elements xj) the vector of spatial coordinates. ρ is

the density, uj the displacement vector, Fj the body force vector, and τjk the stress
tensor. Each dot indicates a time derivative.

Tensor notation will be used. Ordinary subscripts index the spatial components of
vectors and tensors. Subscripts appearing after a comma indicate a spatial deriva-
tive in the indexed direction. The summation convention requires that repeated
subscripts, like k in equation (1), be implicitly summed and eliminated.

Next, Hooke’s Law assumes a linear relationship between the stress tensor and a
spatially differentiated displacement vector, called the strain tensor:

τjk(x
˜
, t) = cjklm(x

˜
) · ul,m(x

˜
, t). (2)

The tensor cjklm is the elastic stiffness, with a maximum of 21 independent compo-
nents in a three-dimensional coordinate system. The following symmetries always
hold:

cjklm = ckjlm = clmjk; so

cjklm = ckjlm = cjkml = ckjml = clmjk = cmljk = clmkj = cmlkj.
(3)

Combining the equations (1) and (2) to eliminate the stress tensor produces the
elastic wave equation:

ρ(x
˜
) · üj(x

˜
, t)− [cjklm(x

˜
)ul,m(x

˜
, t)],k = Fj(x

˜
, t). (4)

We use the Fourier kernal exp(i2πft) to transform from frequency f to time t. The
inverse transformation uses the complex conjugate.

4π2f 2ρ(x
˜
)ũj(x

˜
, f) + [cjklm(x

˜
)ũl,m(x

˜
, f)],k + F̃j(x

˜
, f) = 0. (5)

Tildes will mark Fourier transformed functions.

Energy Flow

A raypath should indicate the flow and direction of energy in a wavefield. Only in
isotropic media can we assume that this flow of energy is perpendicular to wavefronts.
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To describe energy flow, we do not even need to know how to decompose the wavefield
into modes and wavefronts.

Take the dot product of each side of the elastic wave equation (4) with u̇j.

Fju̇j = ρüju̇j − (cjklmul,m),ku̇j

=
d
dt
(
1
2
ρu̇ju̇j)− (cjklmul,mu̇j),k + cjklmul,mu̇j,k

=
d
dt
(
1
2
ρu̇ju̇j +

1
2
cjklmuj,kul,m)− (cjklmul,mu̇k),j .

(6)

(The symmetries of equation (3) were used.) This equation is in the form of a
conservation law:

dσ(x
˜
, t)

dt
+∇ · J

˜
(x
˜
, t) =

dσ(x
˜
, t)

dt
+ Jj,j(x

˜
, t) = 0, (7)

where

σ(x
˜
, t) ≡ 1

2
ρ(x
˜
)|u̇
˜
(x
˜
, t)|2 + 1

2
cjklm(x

˜
)uj,k(x

˜
, t)ul,m(x

˜
, t) (8)

is the total energy density, and

Jj(x
˜
, t) ≡ −cjklm(x

˜
)ul,m(x

˜
, t)u̇j(x

˜
, t) = −τjk(x

˜
, t)u̇k(x

˜
, t) (9)

is the energy flow, or Poynting vector.

Define the group velocity (or energy velocity) gj by

Jj(x
˜
, t) ≡ σ(x

˜
, t)gj(x

˜
, t). (10)

The energy flow equals the energy density times the energy (group) velocity. Ray-
paths are generally defined to follow energy. Let us define a raypath as a curve
which is tangent to the group velocity vector at every point. In the anisotropic case,
raypaths will not necessarily be perpendicular to wavefronts.

Wave Mode Decomposition

Assume that a solution for the displacement vector uj(x
˜
, t) is well approximated

locally by the approximation:

uj(x
˜
, t) ≈ aj(x

˜
)φ[t− T (x

˜
)]; and ũj(x

˜
, f) ≈ ãj(x

˜
)φ̃(f)exp[−i2πfT (x

˜
)]. (11)

where aj gives the local amplitude and φ modulates the phase according to the time
delay T .

Substituting equation (11) into (4) gives the following (suppressing arguments):

0 =− ρajφ̈+ [cjklm(al,mφ+ alφ̇sm)],k + Fj

=− ρajφ̈+ cjklm,k(al,mφ+ alφ̇sm)

+ cjklm(al,kmφ+ al,mφ̇sk + al,kφ̇sm + alφ̈sksm + alφ̇sm,k) +Fj

=− (ρaj − cjklmalsksm)φ̈

+ [cjklm,kalsm + cjklm(al,msk + al,ksm + alsm,k)]φ̇

+ (cjklm,kal,m + cjklmal,km)φ+ Fj,

(12)
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where sj(x
˜
) = T,j(x

˜
) is the phase slowness vector, pointing in the direction of a local

plane wave, with a magnitude equal to the reciprocal of the wave velocity.

In the frequency domain, we find a similar expression, grouped by powers of f .

0 = {4π2f 2(ρaj − cjklmalsksm)

+i2πf [cjklm,kalsm + cjklm(al,msk + al,ksm + alsm,k)]

+(cjklm,kal,m + cjklmal,km)}φ̃+ F̃j.

(13)

To allow non-vanishing φ, each of these three scaled terms should vanish in areas
with a vanishing body force Fj.

The first term produces the equation appropriate for a high-frequency limit—a vector
version of the Eikonal equation:

aj(x
˜
) = [cjklm(x

˜
)sk(x

˜
)sm(x

˜
)/ρ(x

˜
)] · al(x

˜
), ∀j. (14)

Notice that this equation is independent of time or frequency. If we scale equation
(14) with a phase velocity v(x

˜
) = |s

˜
(x
˜
)|−1, the reciprocal of the magnitude of the

phase slowness, then

v(x
˜
)2aj(x

˜
) = [cjklm(x

˜
)ŝk(x

˜
)ŝm(x

˜
)/ρ(x

˜
)] · al(x

˜
), ∀j. (15)

Choose a unit normal ŝj = vsj to a particular plane wave. The eigenvalues of equation
(15) equal the squared velocities, and the eigenvectors give the polarity of different
wave modes (i.e. compressional and shear waves).

Equations (14) and (15) resemble the Christoffel equation, which Fourier transforms
the spatial dimensions and assumes a homogeneous material. Rather than assume
global homogeneity, I prefer a high-frequency approximation that assumes stiffness
to change slowly over the spatial wavelengths of the propagating wavefront.

A plot of |s
˜
| as a function of ŝ

˜
is called a slowness surface. A plot of v = |s

˜
|−1 as a

function of ŝ is called a normal surface.

The remaining terms of (13) give “Transport equations” in regions of vanishing body
sources:

[cjklm(x
˜
)sm(x

˜
)al(x

˜
)],k + cjklm(x

˜
)sk(x

˜
)al,m(x

˜
) = 0, and

[cjklm(x
˜
)al,m(x

˜
)],k = 0, ∀j. (16)

These functions are also independent of time and frequency.

Mode energy flow

Substituting the approximation (11) into the total energy density (8), we find

σ(x
˜
, t) =

1
2
ρ(x
˜
)|a
˜
(x
˜
)|2φ̇[t−T (x

˜
)]2+

1
2
cjklm(x

˜
)aj(x

˜
)sk(x

˜
)al(x

˜
)sm(x

˜
)φ̇[t−T (x

˜
)]2 . (17)

Because of equation (14), these two terms are equal—i.e., the kinetic equals the
potential energy density.

σ(x
˜
, t) = cjklm(x

˜
)aj(x

˜
)al(x

˜
)sk(x

˜
)sm(x

˜
)φ̇[t− T (x

˜
)]2 . (18)
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Similarly, the energy flow (9) becomes

Ji(x
˜
, t) = cjklm(x

˜
)ak(x

˜
)am(x

˜
)sl(x

˜
)φ̇[t− T (x

˜
)]2 . (19)

Substituting energy density (18) and energy flow (19) into the definition of group
velocity (10), we find the following equality:

cjklm(x
˜
)ak(x

˜
)am(x

˜
)sl(x

˜
) ≡ [cnklm(x

˜
)an(x

˜
)al(x

˜
)sk(x

˜
)sm(x

˜
)] · gj(x

˜
); and

gj(x
˜
) =

cjklm(x
˜
)ak(x

˜
)am(x

˜
)sl(x

˜
)

cnklm(x
˜
)an(x

˜
)al(x

˜
)sk(x

˜
)sm(x

˜
)
= [cjklm(x

˜
)âk(x

˜
)âm(x

˜
)/ρ(x

˜
)]sl(x

˜
).

(20)

Equation (14) has allowed the last equality. Notice that, under this approximation,
the group velocity is function only of position, not time or frequency. A plot of |g

˜
| as

a function of direction ĝ
˜
is called a ray surface.

If both sides of equation (20) are dotted with the slowness vector sj(x
˜
), then we find

that
gj(x

˜
)sj(x

˜
) = 1. (21)

This important result states that the dot product of the group velocity vector with
the slowness vector is unity. The slowness vector is perpendicular to the wavefront,
by construction, but the group velocity vector is not, unless the group and phase
velocities are equal.

To propagate a wavefront one small step ∆t in time, we first calculate the normal ŝ
˜to each point on the wavefront. The phase velocity v = |ŝ

˜
|−1 along the wavefront is

given by the appropriate eigenvalues of equation (14). With this value of s
˜
= ŝ
˜
/v,

we can calculate the group velocity g
˜
by substitution into equation (20). Each point

on the wavefront can be extrapolated in the direction of g
˜
by a perturbation g

˜
·∆t.

Finally, we connect the revised points on the wavefront and recalculate the normal
vectors ŝ

˜
.

It is possible to calculate a group velocity surface from a slowness surface numerically,
and vice versa. Assuming the elastic material desribed by the stiffness tensor C

˜̃
and

the density ρ to be fixed, let us perturb the slowness vector s
˜
+δs

˜
and particle motion

â
˜
+ δâ

˜
in a way that continues to satisfy equation (14). Expanded to first order,

δaj = cjklm/ρδsksmal + cjklm/ρskδsmal + cjklm/ρsksmδal (22)

Take the dot product of both sides with aj and regroup,

ajδaj = 2[cjklm/ρsmajal]δsk + [cjklm/ρsksmaj]δal = 2gkδsk + alδal. (23)

We have used the definition of group velocity (20), the Eikonal equation (14), and
the symmetries of stiffness (3) to simplify the terms in brackets. Subtracting the
identical terms we find the simple result

gjδsj = 0. (24)

And because of (21), we also have

sjδgj = −gjδsj = 0. (25)
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The perturbation s
˜
+δs

˜
must lie along the slowness surface to be a valid perturbation.

Thus, s
˜
is tangent to the slowness surface, and g

˜
is perpendicular to the slowness

surface. Similarly, the phase slowness is perpendicular to the ray surface.

The normal relations implied by (25) allow us to calculate the angle between s
˜
and g

˜
.

If we know the magnitude of one vector, then equation (21) allows us to calculate the
magnitude of the other vector. If we have already constructed a slowness surface, then
group velocity directions are calculated as normals to this surface. The magnitudes
of the group velocities derive from the cosine relation (21), providing all information
necessary to draw the ray surface. Similarly, the slowness surface can be constructed
from a ray surface.

Impulsive source

Assume a body force with an arbitrary wavelet at an impulsive location: x
˜
0:

Fj(x
˜
, t) = w(t)bjδ(x

˜
− x
˜
0), and F̃j(x

˜
, f) = w̃(f)δ(x

˜
− x
˜
0). (26)

The only term of equation (13) that could cancel this impulsive term would involve
the second spatial derivative of aj(x

˜
). Thus,

cjklm(x
˜
)al,km(x

˜
)φ(t) = −Fj(x

˜
, t) = −w(t)bjδ(x

˜
− x
˜
0). (27)

Since the approximation (11) allows for an arbitrary scaling of the amplitude and
phase terms, we can assume that our solution sets

φ(t) = w(t), and

cjklm(x
˜
)al,km(x

˜
) = bjδ(x

˜
− x
˜
0).

(28)


