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abstract

We automatically improve an interval velocity model after picking residual in-
consistencies from constant-offset depth migrations. For generality, we employ
a reflection traveltime tomography algorithm, which allows other applications
and other sources of information.

Many methods of depth migration velocity analysis emphasize well-focused
images and use tools similar to semblance stacks. Others linearize and in-
vert the effect of perturbed velocities on migrated images. We prefer to use
developed methods of reflection traveltime tomography by converting picked
migrated reflections into equivalent multi-offset traveltimes.

Reflection traveltime tomography finds interval velocities and reflection ge-
ometries that best explain observed surface reflection times. Reflection tomog-
raphy has evolved away from layered models toward independent parameters
for velocities and reflectors. Interval velocities are parameterized as a smooth
function of spatial coordinates. Reflections are described by a collection of
common-reflection points, which do not assume more continuity than neces-
sary to reconstruct picked segments of picked reflection times.

Migration facilitates prestack picking by simplifying diffracted reflections
and dispersing noise. The effective signal-to-noise ratio improves. Depth mi-
gration does not add information to reflections, however. In fact, the bias of
a poor velocity model must be removed by reconstructing the prestack travel-
times that produced the poor migration. To do so, we reconstruct the paths
and surface geometries for each of the picked migrated reflector positions.
Conventional dynamic ray methods or extrapolated traveltime tables suffice.

Constant-offset sections of a North Sea line were independently migrated
in depth and viewed on a 3D interpretive workstation. One reflection at the
base of chalk imaged at inconsistent depths over offset. The migrated depths
of this and other reflections were picked over a range of offsets. Equivalent
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prestack traveltimes were modeled through the migration velocity model. The
chosen method of traveltime tomography implicitly encouraged consistency in
common-reflection points for raypaths at various offsets. The final estimated
velocity model showed an increase in velocities near the base of the chalk,
then a decrease in velocities below. Remigration of the data with the revised
velocities greatly increased the visibility of the reflection at the base of the
chalk.

Dynamic ray methods and explicit traveltime extrapolations identify com-
mon-reflection points that best model prestack traveltimes. The error between
a modeled and measured traveltime is converted into an equivalent positioning
error for the reflection point. Velocities are revised to minimize the variance
of these positioning errors for all offsets of each common-reflection point.

Introduction

Velocity analysis of seismic data after prestack depth migration has largely
concentrated on better focused images of reflectors (e.g. Jeannot et al, 1986;
Al-Yahya, 1989; and MacKay and Abma, 1989). Others have formulated to-
mographic methods that directly optimize the effect of velocities on migrated
depths (Fowler, 1988; Etgen, 1990; van Trier, 1990). Velocity models are ex-
pected to produce consistent images in depth from independently migrated
gathers: usually common-offset or common-shot. Iteratively linearized inver-
sions can perturb velocity models to reduce these inconsistencies. Each of
these methods requires an algorithm designed specifically for depth migration,
with no other obvious application.

Alternatively, we prefer to use prestack depth migrations as a source of
information for already existing methods of reflection traveltime tomography,
such as Sattlegger et al (1981), Bishop et al (1985), Bording et al (1987),
Sword (1987), Dyer and Worthington (1988), Sherwood (1989), Harlan et al
(1989, 1991), and Stork and Clayton (1991). These methods usually require
lists of picked reflection times for many source and receiver combinations. The
estimated interval velocities are also used to detect the anomalous velocities
of gas and overpressure, and to correct the distortions of structure by shal-
low velocity changes (“buried statics”). Those interested only in applications
to depth migration still benefit from simpler algorithms, with broader appli-
cation, and with better-understood properties. Those interested most in the
interpretation of velocities find that migration improves the quality of prestack
picking.

Few independently developed methods of reflection traveltime tomogra-
phy share identical physical parameters, input data, or numerical methods.
This paper attempts to isolate features that adapt to a variety of data with
the fewest physical constraints. Sattlegger et al (1981) introduced the to-
mographic optimization of layered models: continuous reflectors that verti-
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cally delimit sharp changes in interval velocities, usually with smooth lateral
changes. With few parameters, layer boundaries and velocities can be opti-
mized simultaneously. Sherwood’s survey (1989) shows the continuing popu-
larity of this model. The first three-dimensional applications (Chiu et al, 1986)
extended the layered model.

Bishop et al (1985), Bording et al (1987), Dyer and Worthington (1988),
and Toldi (1989) preferred models that decouple velocities and reflector ge-
ometries. Velocities can vary continuously, with resolution dependent on dis-
cretization and binning. Sword (1987), Harlan et al (1989, 1991), Biondi
(1990), van Trier (1990), and others avoided continuous reflectors and esti-
mated common-reflection points. The additional degrees of freedom raise con-
cerns about convergence. Fowler (1988), Etgen (1990), and Stork and Clayton
(1991) carefully analyzed the effect of perturbed velocities on migrated reflec-
tion points and concluded that both must be perturbed simultaneously. We
introduce a simple method of doing so.

These papers use a variety of input data: picked prestack traveltimes,
picked prestack depth migrations, constant velocity time migrations, picked
“stacking velocities,” semblance panels, local slant stacks, and beam stacks.
We have been able to optimize many of these alternative forms of data by
treating them as simple functions of traveltimes. Although we pick migrated
depths from our example data, we optimize an equivalent set of prestack re-
flection times.

An example of depth migration errors

Figure 1 displays a prestack (Kirchhoff) depth migration of a seismic line from
the Netherlands’ North Sea, spanning 11.25 km of midpoints and 5 km depth.
Constant-offset sections were migrated independently, then stacked over offset
to produce a single image. The original velocities were largely stratified and
only increased with depth. (500 traces are spaced at 22.5 m—one for each
original shot position.)

When the unstacked cube of migrated data was examined on a 3D inter-
pretative workstation, some reflections were seen to align poorly over offset.
Figure 2 shows some “common-image point” (CIP) gathers. Each gather shows
the image for a single horizontal position and a range of depths and offsets
(154 m to 2000 m offset). Note that the reflector at shot position 400 and
2750 m depth is very inconsistent over offset. (Constant-offset depth migra-
tions do not have the numerical artifacts from edge effects found in shot profile
migrations. See other differences in Cox and Wapenaar, 1992.)

Figure 3 shows the picks of migrated reflections at various offsets. At
least five offsets were picked for each reflector, always including a near offset
of 154 m. The maximum pickable offset increased linearly from 1300 m at
800 m depth to 3574 m at 4800 m depth. The grey levels in figure 3 show the
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transmission velocity model used to migrate the data originally. A few sample
reflection raypaths are shown. (This figure spans the same distances as figure
1.)

The picks of most reflections are almost indistinguishable. The reflector
near 2500 m depth lies beneath a 1000 m thick interval of chalk and shows
considerable inconsistency over offsets 154 m to 2700 m. The chalk velocity
cannot be adjusted to flatten this one reflection without spoiling the images
of deeper reflectors. Although the chosen velocity model may appear close to
a solution, it is not.

Migrating for signal enhancement

After prestack depth migration, a cube of unstacked reflection seismic data
can become considerably easier to interpret and pick. Migration improves
signal-to-noise ratios by averaging random noise over midpoint. Migration also
simplifies reflections from structure with high curvature (particularly diffrac-
tions), reduces overlapping of events, and allows easier visual correlation over
offset.

Depth migration does not add information to observed reflections, how-
ever. If anything, depth migration adds the bias of a particular velocity model
that, good or bad, describes only our previous assumptions. If the migration
and “true” velocities differ by a shallow velocity anomaly, for example, then
migration will only diffuse and weaken underlying reflections.

If we choose migration velocities only to improve the quality of picks, then
we may prefer to initialize our velocity optimization with other models. First,
we must remove the bias of our migration velocities from the picked migrated
depths, so far as possible. To do so, we reconstruct the prestack traveltimes
that must have imaged at the picked migrated depths.

Reflection times for tomography

To reconstruct prestack traveltimes from the picked migrated depths in figure
3, we use geometric constant-offset modeling: that is, find surface midpoints
for reflections from picked reflectors with the proper locations, angles, and
offsets. The prestack traveltimes (and their spatial derivatives) are given by
the estimated raypaths through the reference velocity model. See the appendix
for details.

Conventional methods of dynamic ray shooting or relaxation suffice for
this modeling step. Explicit extrapolation and tabulation of traveltimes are
recommended for their simplicity and speed (Vidale, 1990; van Trier, 1990;
Moser, 1991; and Asakawa and Kawanaka, 1993).

Figure 4 shows the corresponding constant-offset time picks modeled from
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the reflectors in figure 3. These picks should be equivalent to the prestack
traveltimes and moveouts in the original unmigrated, unstacked data. We
can now proceed with a conventional reflection traveltime tomography, as if
these picks were our original data. The chosen method of reflection traveltime
tomography will implicitly encourage consistent images of common-reflection
points.

Describing a velocity function

We parameterize the transmission slowness P (x) (reciprocal velocity) as a
smooth function of our spatial coordinates x. Basis functions, splines, or
smoothed grids serve equally well. We require only that the continuous slow-
ness be a linear function of its parameters. The smoothness of the function
should also be adjustable so that resolution can be increased as an inversion
proceeds and as accuracy increases.

As a concrete example, let discrete coefficients Pi scale basis functions g(x)
centered at points xi. The widths of these basis functions are controlled by a
scalar w.

P (x) ≡∑
i

Pi w
−1 g[(x− xi)/w],

where
∫

g(x)dx = 1, and
∫

g(x) ‖x‖2 dx ≈ 1. (1)

This basis function has a normalized area and width, so that the mag-
nitudes of Pi and w are comparable to the slownesses and spatial resolution
respectively. Multidimensional Gaussians are convenient. This continuous
slowness model is a linear function of the coefficients, a convenient property
for optimization. The resolution of this model can be modified dynamically
simply by adjusting the scalar w.

Optimizing common-reflection points and velocities

An unoptimized slowness model will not allow a fan of modeled rays to share
a common-reflection point and explain the measured traveltimes at all offsets.
Dynamic ray tracing, shooting, and relaxation can find reflection paths that fit
multi-offset reflection times as well as possible. See the appendix for details.
We prefer the powerful combination of explicit traveltime extrapolation (e.g.
Vidale, 1990; van Trier, 1900; Moser, 1991) with Fermat’s principle to esti-
mate representative raypaths (Harlan, 1990). Spatial derivatives of measured
traveltimes constrain the dips of reflectors.

Assume that we have identified many different common-reflection points,
indexed by b. Each point reflects Nb raypaths with measured traveltimes tbh at
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offsets indexed by h. If estimated raypaths are written as a function of spatial
distance a, then modeled traveltimes are line integrals of slowness along the
paths:

Tbh =
∫ abh

0
P [xbh(a)]da. (2)

For convenience, the raypath xbh(a) begins with a = 0 at a source position,
increases along the raypath, through the reflection point, and reaches the total
length abh of the ray at the receiver location. This modeled traveltime is also
a linear function of the slownesses and of the parameters that describe these
slownesses.

When raypaths do not include reflections, tomography iteratively linearizes
the modeling by holding raypaths constant and considering only the effect of
interval velocities on traveltimes. Because of Fermat’s principle, perturba-
tions of raypaths do not affect the traveltimes to first order. The position of
reflections, however, does affect traveltimes to first order. By requiring perfect
agreement with picked times, we can measure the effect of perturbing velocities
on reflector positions.

In the vicinity of a reflection point, up- and down-going waves can be
approximated as plane waves. Assume that a reflector has been displaced
perpendicular to its dip until the measured and modeled traveltimes (tbh and
Tbh) of a raypath agree. If the up- and down-going rays meet at an angle
θbh, then the following error measures the effect of such a displacement on the
zero-offset (normal-incidence) reflection time:

ebh = (tbh − Tbh)/ cos(θbh/2). (3)

See the appendix as well as Stork and Clayton (1992) for a justification of the
cosine. Notice that this positioning error increases as the angle of reflection
increases.

Since the velocity model is imperfect, we know that our original positions
for reflection points were incorrect. We do not want to discourage a new
velocity model from moving the reflection points, but we do want consistency
from all offsets that share a common-reflection point.

A revised velocity model need not drive the positioning errors (3) to zero
but should make the errors depend on the reflection point b alone. We want
to find the slowness model that minimizes the variance of these errors over
offset:

min
Pi

=
∑
b

∑
h

(ebh − 1

Nb

∑
h′

ebh′)2. (4)

Analogously, prestack depth migration must create consistent images from
different offsets, without constraining the depth of reflectors. This quadratic
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function of slowness lends itself to least-squares methods like conjugate gradi-
ents or singular-value decomposition.

Figure 5 shows estimated transmission velocities and reflection geometries.
These estimated depths vary much less over offset than do the original picks in
figure 3. Picks are discarded if the range of offsets is inadequate to constraint
a particular reflection point. (Single offsets and nearly identical offsets do not
harm the optimization, but do not help either.) Figure 6 shows the subtraction
of the original velocities in figure 2 from the estimated velocities in figure 5. A
single reflector location is able to fit modeled traveltimes to within a quarter
wavelength. Note that velocity increases near the bottom of the chalk, then
decreases again below. Well logs in the area show similar changes in chalk
velocities.

Figure 7 shows a remigration of the data with revised velocities. This time,
the reflection at the bottom of the chalk appears very strong and coherent, as
it does before stack. The common-image point gathers in figure 8 show greater
consistency over offset. Although a few shallower reflections seem slightly less
coherent before stack, the residual inconsistencies are distributed much more
evenly.

No further iteration was necessary. If substantial inconsistencies had re-
mained over offset, then repicking would not have helped unless new reflections
became visible before stack. In this case, revised velocities affected only the
migrated depths of reflectors before stack, not their coherence or strength.

Recommendations

The example in this paper was chosen to demonstrate the equivalence of depth
migration velocity analysis and reflection tomography. Most of our applica-
tions of reflection tomography begin with densely picked stacking functions
that best describe the unmigrated prestack moveouts of reflections over offset.
The following guidelines are appropriate:

1. To avoid time-consuming hand optimization of prestack depth migration
velocities, use tomographic velocity estimations whenever possible.

2. Use post-migration picks when unmigrated data are too noisy for prestack
interpretation, or when complex structure overlaps considerably in time.

3. Use post-migration picks to improve an already existing interval velocity
model that requires some minor improvement.

4. Use unmigrated prestack traveltimes to estimate an interval velocity
model from scratch, when data quality allows.

5. Pick data prior to migration when shallow lateral velocity anomalies are
likely. (Migration will destroy evidence of “time sags.”)
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6. When densely picked “stacking velocities” are available (twenty per ca-
blelength), tomographically estimate an interval velocity routinely for
depth migration or conversion.

Conclusions

Already existing tools for reflection traveltime tomography are easily adapted
to prestack migrated data. Migration eases picking by improving signal-to-
noise ratios and by simplifying the appearance of reflections. Those interested
only in migrated images will benefit from using a more general algorithm,
capable of incorporating traveltime information from other sources. When the
initial velocity model is poor, some reflections may be easier to pick without
migration. Post-migration picks can be converted and combined with pre-
migration picks, and even with picks from “stacking velocity” analyses. One
tomographic algorithm can serve for many varieties of data.

No repicking of data appears to be necessary, except to eliminate multi-
ples, cycle skipping, and other mistakes. Traveltime tomography is sufficiently
iterative to allow for the non-linearities of ray-bending, constrained velocities,
and so on. If tomographically estimated velocities and reflectors do not fit the
picked data, then the picks may not be consistent with the physical assump-
tions. Tomography provides the best estimate of migrated depths from surface
information alone. Focusing analysis can remove any remaining unexplained
inconsistencies. Tools also exist for interpretive modification of the best to-
mographic model, particularly to add or adjust sharp velocity contrasts, such
as salt interfaces.

Identifying common-reflection points improves the robustness and conver-
gence of estimated interval velocities. Errors in modeled traveltimes can be
converted into equivalent displacements of the reflection point for each ray-
path. An optimum velocity model encourages these displacements to be as
consistent as possible, without attempting to preserve the original positions.
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In this appendix, we fill in algorithmic details with a notation chosen to mini-
mize ambiguity. First, we define how partial prestack depth migrations trans-
form data with a summation (“Kirchhoff”) formulation. Then we relate the
effect of migration on coherent reflections to the raypath approximations used
by traveltime tomography. Picks of constant-offset migrated depths are used
to find equivalent picked prestack reflection times, and vice-versa. Finally,
we examine how perturbations of reflector locations affect the modeled travel-
times, so that tomography can simultaneously optimize reflection points and
interval velocities.

Prestack depth migration

Seismic amplitudes u(t,xs,xr) (displacement or pressure) are recorded as a
function of time t at the surface source and receiver positions indexed by s
and r. The Cartesian elements of a coordinate vector x are (x, y, z), where z
increases with depth. For each surface source or receiver position (xs or xr)
we extrapolate a table of traveltimes T (x,xs) to many buried positions x.
Traveltimes are understood to satisfy an Eikonal equation. The gradient of
traveltime has a magnitude equal to reciprocal velocity, or slowness:

1/v(x) ≡
∥∥∥∇xT [x,x

′]
∥∥∥ (5)

The Eikonal equation is accompanied by transport equations, which specify
the geometric changes in amplitude R(x,xs). The arguments of T and R
both can be reversed symmetrically (a result of reciprocity). Single-valued
functions such as these do not allow caustics or multiple arrivals. By making
the slowness and velocity independent of x′ we also assume isotropy.
The data are assumed to be a linear function of the migrated image
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u(t,xs,xr) =
∫

dx m(x) δ[t− T (x,xs)− T (x,xr)] R(x,xs) R(x,xr) gain(t).

(6)
The recorded data are usually scaled by an increasing function of time, such
as gain(t) = t2, to reduce the dynamic range. Intentionally, this gain cancels
some of the scaling by geometric factors.
A generalized inverse of this linear equation would be preferable, but for effi-
ciency, a modified adjoint operation gives an approximate inverse. This sum-
mation method is often called a “Kirchhoff” method although it need not use
the integral and approximation by that name. The image locations will be
indexed by b.

m̂(xb) =
∑
s,r

∫
dt u̇(t,xs,xr) δ[t−T (xb,xs)−T (xb,xr)]R(xb,xs)R(xb,xr) gain(t).

(7)
The summation is over recorded source and receiver positions. A time differ-
entiation of the data (a “rho” filter) partially corrects the phase distortion of
the model.
For our purposes, a partial migration will be more useful. We find it useful to
perform the summation over the midpoint coordinate xc ≡ (xr + xs)/2 rather
than source position. An image at a constant “half offset” xh ≡ (xr − xs)/2
restricts the summation to source and receivers with a constant separation:

m̂h(xb) =
∑
c

∫
dt u̇(t,xc − xh,xc + xh) δ[t− T (xb,xc − xh)− T (xb,xc + xh)] ·

· R(xb,xc − xh) R(xb,xc + xh) gain(t). (8)

Similarly, we can remodel data with different versions of the constant offset
migrations:

û(t,xc − xh,xc + xh) =
∑
b

m̂h(xb) δ[t− T (xb,xc − xh)− T (xb,xc + xh)] ·
· R(xb,xc − xh) R(xb,xc + xh) gain(t). (9)

When the traveltime table is consistent with the data, the constant-offset
images m̂h(xb) should not show changes in phase over different offsets xh. For
geometric discussions of phase delays, we can ignore the smoothly varying gain
and geometric scale factors.

Reconstructing raypaths from traveltimes

Usually, one constructs a traveltime table T from a particular velocity model.
To study the properties of the transforms (6) through (9), we will find it useful
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to take the traveltime table as given and deduce other properties from it. We
will then find it easier to improve the velocity model and traveltime table.
Define a slowness vector p by treating the traveltime table T as a scalar po-
tential field:

p[x,x′] ≡∇xT [x,x
′] (10)

and

T [x,x′] =
∫ x

x′
p[x′′,x′] · dx′′, (11)

where the line integral can follow any path. By construction, the vector slow-
ness is irrotational (waves should not travel in a loop): ∇× p = 0.
The magnitude of the slowness vector is the slowness P , the reciprocal of the
local velocity—a restatement of the Eikonal equation:

P (x) ≡
∥∥∥p[x,x′]

∥∥∥ (12)

To derive traveltimes tables from local slownesses, we need constants of inte-
gration. We can extrapolate a unique traveltime table T from P if traveltimes
are specified on a point, curve, or surface, and if traveltimes satisfy Laplace’s
equation ∇2T = 0 elsewhere (sourceless). Unfortunately, caustics of cross-
ing slowness vectors easily form during extrapolation, producing multivalued
traveltimes. In practice, single-valued extrapolations select either minimum
traveltimes or those with the strongest geometric scale factors.
Let a raypath x(a) be parameterized as a function of spatial distance a, so
that ‖dx(a)/da‖ ≡ 1. The raypath should also be be tangent to any slowness
vector that originates from another point on the path:

d

da
x(a) ≡ p[x(a),x(a0)]/P [x(a)]. (13)

Thus,

T [x(a),x(a0)] =
∫ a

a0
da′ d

da′T [x(a
′),x(a0)]

=
∫ a

a0
da′ ∇T [x(a′),x(a0)] · d

da′x(a
′)

=
∫ a

a0
da′

∥∥∥p[x(a′),x(a0)]
∥∥∥ ∥∥∥ d

da′x(a
′)
∥∥∥

=
∫ a

a0
da′ P [x(a′)] (14)

We have the conventional result that the traveltime is the integration of slow-
ness along a raypath.
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The raypath was defined as tangent to the slowness vector, but we could make
the equivalent assumption that the final integral in equation (14) is stationary
with respect to the raypath x (minimum traveltime). The calculus of variations
allows us to reverse the derivation.
To extrapolate a raypath from a point x(a0) in a known direction p(a0), we
can use equation (13) and the following, which derives from (13) and (12):

d

da
p[x(a),x(a0)] =∇xP [x(a)]. (15)

This equation describes how a ray is bent by local changes in slowness (Snell’s
Law). Dynamic ray tracing uses finite differences to extrapolate the ray differ-
ential equations, (13) and (15). Other methods include shooting, relaxation,
and the reciprocity method (which we use), described in Harlan (1990) and
Matsuoka and Ezaka (1992).

Residual geometric modeling and migration

After performing the constant offset migration in (8), we identify the same
continuous reflector at several constant offsets. We pick the migrated positions
of this reflector xbh = [xb, yb, zbh] at a fixed lateral position (xb, yb) and allow
the depth zbh to change with offset index h. Each coherent pick is indexed
by b. Let us also pick the local dip with a vector qbh that is normal to the
migrated reflector. For convenience, assume a unit magnitude: ‖qbh‖ ≡ 1.
Locally, the coherence of this reflection could be approximated to first order
as a planar surface:

m̂h(xb) ≈ f [(xb − xbh) · qbh] (16)

where f(·) is a simple wavelet describing the local coherence perpendicular to
the surface.
All our picked data, such as found in figure 3, will be summarized as a list
of {xbh, qbh}, for many b and h. Migrated reflectors need only be continuous
enough over xb to allow the picking of a local dip. What coherence in the
original unmigrated data would have produced these picks? Can we derive a
set of equivalent unmigrated traveltime picks?
We will find it easiest to answer these questions by seeing how equation (9)
remodels the data. The migrated reflection point xbh contributes to all source
and receiver pairs with fixed “half offsets” xh = (xr−xs)/2. For each affected
midpoint xc = (xr+xs)/2, we can draw a raypath from the source and receiver
to the reflection point. The two rays reach the reflection point with known
slowness vector directions p(xbh,xc + xh) and p(xbh,xc − xh).
By looking for a stationary phase in the constant-offset modeling integral (9)
with the approximation (16), we find this reflection point contributes most to
the midpoint which maximizes
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max
xc

∥∥∥[p(xbh,xc − xh) + p(xbh,xc + xh)] · qbh

∥∥∥ (17)

In other words, the rays should reflect symmetrically about the normal to the
reflector. Compare this argument to that of Liu and Bleistein (1995). When
this dot product is maximized we find that

p(xbh,xc − xh) + p(xbh,xc + xh) = 2 P (xbh) cos(θcbh/2) qbh,

where cos(θcbh) ≡ [p(xbh,xc − xh) · p(xbh,xc + xh)]/P (xbh)
2. (18)

θcbh gives the angle between the two raypaths as they meet at the reflection
point.
The total traveltime of a reflection is given by

tch(xbh) = T (xbh,xc − xh) + T (xbh,xc + xh). (19)

We see how to reconstruct raypaths, traveltimes, and surface positions from
picks of migrated reflectors. For completeness, we outline how to reverse this
procedure.
Let us define an equivalent set of traveltime picks from the original unmigrated
data. For each offset xh and midpoint xc we pick a traveltime tch. According
to the migration equation (8), this pick affects all migrated positions xbh along
the arc described by equation (19). To determine which of these midpoints
contribute most, we require more information.
We can also pick a dip of traveltime with respect to midpoint pch = ∇xctch
where ∇xc ≡ (∇xs +∇xr)/2. We assume a corresponding coherence in the
data and look for stationary phase in equation (8). The position along the arc
in (19) that contributes most to the picked reflection maximizes

max
xbh

∥∥∥[p(xc − xh,xbh) + p(xc + xh,xbh)] · pch

∥∥∥ (20)

Thus, a constant-offset time pick {tch,pch} or migrated pick {xbh,qbh} are in-
terchangeable, and can be used to derive each other and construct the same set
of raypaths. To distinguish traveltimes that are reconstructed from migrated
picks, we use the index tbh in equation (3) in the main text to abbreviate
tch(xbh). The stationary phase approximations make the same high frequency
assumptions as the Eikonal and ray equations, and all fail in similar situations.

Converting time errors to reflector errors

A perturbation of the reflection point will perturb the reflection traveltime
(19) according to

∆tch(xbh) ≡ tch(xbh +∆xbh)− tch(xbh) = 2P (xbh) cos(θcbh/2)qbh ·∆xbh. (21)
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Only a perturbation perpendicular to the reflector will affect the traveltime.
We have effectively assumed that the wavefront is planar in the vicinity of the
reflection point.
Traditionally, tomography minimizes errors between modeled and measured
traveltimes. Instead, we can convert traveltime errors into equivalent errors in
reflector positions:

∆x̂cbh =
∆tch(xbh)

2P (xbh) cos(θcbh/2)
qbh. (22)

More conveniently still, we can measure these errors in reflector positions by
the change in traveltime of a normal reflection:

ecbh ≡ ∆tch(xbh)

cos(θcbh/2)
. (23)

As we optimize the slowness model, we do not wish to minimize these errors
in reflector positions absolutely because we do not know the correct absolute
location. Rather we wish the locations to be consistent over offset, with a
minimum variance in position errors, as in equation (4).
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FIGURES

FIG. 1. Prestack depth migration of Netherlands North Sea data with a sim-
ple stratified velocity model. Shotpoint units index the locations of seismic
sources, which are spaced at 22.5 m.
FIG. 2. Common-image-point gathers. Constant-offset migrated images were
sorted over offset at selected common-midpoint locations. Note inconsistent
imaging of reflector at position 400 and 2750 m depth.
FIG. 3. A simple stratified velocity model with picked constant-offset migrated
depths. At least five offsets were picked for each reflection, including a near
offset of 154 m (distance between source and receiver). The maximum pickable
offset increased from 1300 m at 800 m depth to 3575 m at 4800 m depth. Note
the inconsistency of depths at different offsets for the reflection near 2300 m
depth.
FIG. 4. A reconstruction of constant-offset traveltimes from the constant-
offset picks and velocities in figure 3. These are sufficient data for traveltime
tomography.
FIG. 5. An iteratively optimized model for the interval velocities and migrated
reflection depths. The consistency of reflectors over offset has improved.
FIG. 6. A subtraction of the original velocity model in figure 3 from the final
estimated velocity model in figure 5. Note that the velocity has increased
above 2500 m depth and decreased below.
FIG. 7. A revised prestack depth migration with the optimized interval veloc-
ity model in figure 5. The previously weak reflector near 2500 m depth is now
very strong. (Local gain weakens some neighboring reflectors.)
FIG. 8. Revised common-image point gathers. Errors in residual moveout are
much better distributed.


