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Introduction

A casual encounter with geostatistics can be baffling because of some non-
standard terminology. As it turns out, “Kriging,” the core numerical method
of geostatistics, can be derived on a napkin, if you are already familiar with
some standard least-squares methods.

If you want to appreciate geostatistical applications, then try the popular
book “An introduction to Applied Geostatistics,” by Isaaks and Srivastava [3].
If you want a clean mathematical notation, then try “Multivariate Geostatis-
tics: An introduction with Applications,” by Wackernagel [5];

Kriging is just the least-squares solution of a purely under-determined lin-
ear inverse problem. Once you see this equivalence, you can see some simple
ways to improve distance-weighted interpolation methods.

Posing the problem

Geostatistics poses a useful problem that you are unlikely to have encountered
elsewhere in least-squares. The solution looks very familiar, but it has unique
elements that make it very useful.

Assume that you have a continuous function v(x) of a spatial vector x.
Usually x has two dimensions, but nothing about the derivation limits us to
two dimensions.

The actual function v(x) is unknown and needs to be reconstructed from
a collection of samples {vi} at n arbitrarily chosen locations.

vi ≡ v(xi) for i=1, n. (1)

We will interpolate a value v0 at an unsampled location x0 as a linearly
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weighted sum of the n known values {vi}, at sampled locations {xi}:

v(x0) =
n∑

i=1

wi · v(xi), (2)

v0 =
n∑

i=1

wivi, or

v0 = w
⊺ · v,

where w
⊺ ≡ [w1, w2, ..., wn], and v ≡ [v1, v2, ..., vn]

⊺.

In the last version we switch to vector notation.
Our problem: how do we optimally estimate weights w given what we

know about the distribution of x?

Assumptions

We will make a few more assumptions appropriate to a linear least-squares
solution.

We will treat all our values {vi} as random variables. Without loss of
generality (changing variables if necessary), we will assume these variables
have zero expected mean:

E(vi) ≡ 0, for i=0, n. (3)

Assume a constant stationary variance σ2
v for all samples

σ2
v ≡ E(vivi), for i=0, n. (4)

Notice that we have included the unmeasured value v0 in our assumptions.
We will find it convenient to construct a covariance C

˜
matrix for our mea-

sured values:

Cij ≡ E(vivj), for i=1, n and j=1, n, or (5)

C
˜

≡ E(vv⊺).

Note that the covariance is symmetric: Cij = Cji.
Define a covariance vector c for our unknown value relative to the measured

values:

ci ≡ E(v0vi), for i=1, n, or (6)

c ≡ E(v0v).

Much of geostatistics concentrates on the estimation of these covariances.
For now we assume they are known.

Notice that none of our assumptions require that our interpolated value
share the same physical units as the values we are interpolating from. Co-
kriging differs from Simple Kriging largely by combining values with mixed
units. (See Wackernagel for a demonstration of their equivalence.)
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Least-squares solution

Next we estimate our weights as a least-squares optimization, and take advan-
tage of our assumptions.

Define an estimation error σ2
E as the expected error between the true value

and our interpolated value.

σ2
E ≡ E[(v0 −

n∑

i=1

wivi)
2] (7)

= E(v0v0)− 2
n∑

i=1

E(viv0)wi +
n∑

i=1

n∑

j=1

E(vivj)wiwj

= σ2
v − 2

n∑

i=1

ciwi +
n∑

i=1

n∑

j=1

Cijwiwj. (8)

Naturally we want this error to be small. Since this expression is a quadratic
of the weights w, we can minimize σ2

E by differentiating with respect to the
weights and setting the value to zero.

∂σ2
E

∂wi

= −2ci + 2
n∑

j=1

Cijwj = 0 (9)

⇒
n∑

j=1

Cijwj = ci (10)

⇒ C
˜
·w = c

⇒ w = C
˜

−1 · c. (11)

This result is entirely equivalent to Simple Kriging. The optimum weights are
intuitive when you see them in this form.

Naive weights w would simply use the covariance vector c between values
at the known and the unknown locations. Because the known locations are
also correlated with each other, we must remove that effect by multiplying by
their inverse covariance C

˜

−1.
Once we have our estimated weights w, we can explicitly quantify the

error in our estimate. This will allow us to put Gaussian error bars on each
interpolated value. Substitute our solution (10) into our estimation error (8)
for

σ2
E = σ2

v − 2
n∑

i=1

ciwi +
n∑

i=1

ciwi

= σ2
v −

n∑

i=1

ciwi

= σ2
v − c

⊺ ·w. (12)
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Notice that this expected error is independent of correlations between mea-
sured samples. If it were not, then the estimate could be improved.

Choosing covariances

Geostatistics usually concentrates on the estimation of covariances (or vari-
ograms, discussed later).

Here is the most geostatistical assumption of all. The covariance between
values depends only on the vector distance between their sampled positions:

Cij ≡ E[vivj] ≡ E[v(xi)v(xj)] ≡ C(xi − xj) (13)

for i=0, n and j=0, n.

In the absence of other information, it would be appealing to choose a
scale-invariant version of a covariance. Scale-invariance allows covariances to
be independent of the units chosen for spatial distance. Covariance would
similar at any scale, like a fractal.

Unfortunately, this assumption leads to a degenerate solution. Scale-
invariance requires covariances to go to infinity at a distance of zero, which
should have a finite variance σ2

v . As we approach infinity, the covariance ma-
trix C

˜
becomes diagonal like an identity matrix, and so the inverse covariance

has no effect on weights.
We see this degeneracy with a popular interpolation known as Shepard’s

“Inverse Distance Weighting”:

v(x0) =
n∑

i=1

wi · v(xi) where

wi = ∥xi − x0∥
−2/

n∑

j=1

∥xj − x0∥
−2. (14)

This weight decreases with distance squared, like gravity. The denominator is
just a normalization over all samples.

If we are assuming a specific correlation between our measured and in-
terpolated values, then we ought to be able to assume the same correlation
between measured values.

Unfortunately, this covariance approaches infinity at a zero distance:

C
˜
(xi − xj) ∝ ∥xi − xj∥

−2

⇒ σ2
v ≈ ∞ (15)

⇒ C
˜

∝ I
˜

⇒ w ≈ c. (16)
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Sure enough, this degenerate solution tells us to ignore covariances between
our known values.

As it turns out, the degeneracy is easily remedied if we sacrifice scale
invariance below the density of our samples. Choose a small distance ∆x
below which the correlation does not increase any further.

C
˜
(xi − xj) ∝ min(∆x−2, ∥xi − xj∥

−2). (17)

Covariances at any smaller distance will all equal the marginal σ2
v .

Let’s see how this assumption works with a simple example.

A simple example

Let’s say we have two measured values to interpolate along a one-dimensional
dimension x.

One value v2 is twice as far as v1 from the interpolated point v0. Specifically
∥x1 − x0∥ = 1 and ∥x2 − x0∥ = 2.

If we are using Shepard’s interpolation, then we already know enough to
estimate the weights as w⊺ = [0.8, 0.2].

However, it should matter very much if the point we are interpolating is
between the two measured points, or on the same side of both.

For a non-degenerate covariance, we will assume ∆x = 0.5 in our covariance
(17).

On opposite sides of the interpolated point, the two measured points are
weakly correlated with ∥x2 − x1∥ = 3. We get adjusted weights of w

⊺ =
[0.82, 0.18], which is very close to the Shepard’s interpolation weights.

On the same side of the interpolated point, the two measured points are
strongly correlated with ∥x2 − x1∥ = 1. The value v2 is actually better corre-
lated with v1 than it is with the interpolated v0. We expect the nearer value v1
to override and diminish the contribution of v2. And sure enough, the adjusted
weights are actually w

⊺ = [1, 0], which ignores the second point entirely.

Variograms

Most geostatistics literature prefers “variograms” to covariances. This is one of
the biggest and most unnecessary obstacles to newcomers. The two quantities
have a simple equivalence:

γv(xi,xj) ≡
1

2
E{[v(xi)− v(xj)]

2} = σ2
v − Cij. (18)

Variograms have the minor convenience that values no longer need a zero
mean.
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The geostatistical assumption (13) can be rewritten

γv(xi − xj) = σ2
v − C(xi − xj) (19)

Usually variograms are defined in terms of an offset h:

hij = xi − xj;

γv(hij) = σ2
v − C(hij). (20)

Considering only offsets and ignoring sampling, we can write the equivalence
this way:

γ(h) = C(0)− C(h). (21)

If we assume values are uncorrelated at infinite distance, we find

C(∞) = 0

⇒ γ(∞) = C(0)

⇒ C(h) = γ(∞)− γ(h). (22)

The most popular of standard analytic variograms is an exponential:

γexp(h) ∝ 1− exp(−3∥h∥/a), or (23)

Cexp(h) ∝ exp(−3∥h∥/a). (24)

The constant a is the distance over which about 95% of the correlation occurs.
Unlike our distance weighting, this function is not scale invariant over any
range of offsets.

A user must prepare scatterplots and histograms to scan possible values for
the constant a, then choose a best fitting value before kriging can begin. For
this sort of analysis, variograms have proven more popular than covariances.

Kriging as a posterior estimate

It is also possible to recognize Kriging as a special case of a least-squares in-
verse problem, without postulating the specific weighted solution (2). I thank
Dave Hale [1] for explaining this equivalence to me. Kriging is a purely under-
determined inverse problem, which makes it a bit unusual and less familiar.

We assume that we have a model vector m and a data vector d. The data
are assumed to be a linear transform (matrix multiplication) F

˜
of the model,

plus a vector n of noise:

d = F
˜
m+ n. (25)
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We assume that our model and noise are selected from stationary correlated
Gaussian random processes. The expected value of a model given the data (a
posterior estimate) should minimize the following objective function:

S(m) = (d− F
˜
m)⊺C

˜

−1
n (d− F

˜
m) +m

⊺
C
˜

−1
m m. (26)

The covariance C
˜

m is the Gaussian covariance of the model m, and covariance
C
˜

n is the Gaussian covariance of the noise. We also assume that the noise is
uncorrelated to the model. The definition (25) determines the data covariance
C
˜

d:

C
˜

d = F
˜
C
˜

mF
˜

⊺ +C
˜

n. (27)

Since this objective function is a quadratic in m, we can find an optimum
m̂ by setting the derivative to zero:

∂S

∂m⊺
(m̂) = −F

˜

⊺
C
˜

−1
n (d− F

˜
m̂) +C

˜

−1
m m̂ = 0; (28)

⇒ m̂ = (F
˜

⊺
C
˜

−1
n F

˜
+C

˜

−1
m )−1

F
˜

⊺
C
˜

−1
n d; (29)

⇒ m̂ = C
˜

mF
˜

⊺(F
˜
C
˜

mF
˜

⊺ +C
˜

n)
−1
d = C

˜
mF
˜

⊺
C
˜

−1
d d. (30)

The first solution (29) is directly solved from the derivative (28). The sec-
ond solution (30) was shown by Tarantola [4] (Appendix 6.30) to be entirely
equivalent. If (29) is equivalent to (30), then

(F
˜

⊺
C
˜

−1
n F

˜
+C

˜

−1
m )−1

F
˜

⊺
C
˜

−1
n = C

˜
mF
˜

⊺(F
˜
C
˜

mF
˜

⊺ +C
˜

n)
−1; (31)

⇒ F
˜

⊺
C
˜

−1
n (F

˜
C
˜

mF
˜

⊺ +C
˜

n) = (F
˜

⊺
C
˜

−1
n F

˜
+C

˜

−1
m )C

˜
mF
˜

⊺ (32)

= F
˜

⊺
C
˜

−1
n F

˜
C
˜

mF
˜

⊺ + F
˜

⊺. (33)

Both sides of (32) are trivially equal to (33).
This alternate solution (30) is less often used because it requires a matrix

inversion in the data space rather than in the model space. Most typically,
an overdetermined problem has a greater number of data values than model
values. In the case of Kriging, however, the situation is reversed.

Others such as Hansen et al [2] have observed that this alternate solution
(30) is equivalent to Kriging. We will elaborate below.

In the case of geostatistical Kriging, we assume that our model m is a large
dense grid of regularly distributed values. The forward operator F

˜
merely

subsamples that grid for the values d. The dimensionality of d is possibly
orders of magnitude smaller than that of the model m. The transform F

˜
is a

rectangular matrix that has many more columns than rows. Each row contains
mostly zeros and a single column with a value of 1. Most columns do not have
a value of 1 on any row.

Applying the transposed operator F
˜

⊺ to subsampled data d merely repop-
ulates the sampled values of m and leaves all other values set to 0. This is
also the right inverse of the original transform, so that F

˜
F
˜

⊺ = I
˜
.
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If we have sampled the model directly, there is no need to assume any
noise at all. If we allow C

˜
n = ϵI

˜
; ϵ → 0, then the usual estimate (29) becomes

degenerate, and m̂ → F
˜

⊺
d. Rather than interpolating any unsampled values,

this estimate sets them all to zero.
The alternate form (30) lets us set the noise variance directly to 0. We can

then find the following covariances of our sampled data C
˜

d:

Assume C
˜

n ≡ 0; (34)

⇒ C
˜

d = F
˜
C
˜

mF
˜

⊺ (35)

and then rewrite our alternate estimate (30) as

m̂ = (C
˜

mF
˜

⊺)(F
˜
C
˜

mF
˜

⊺)−1
d (36)

= (F
˜
C
˜

m)
⊺
C
˜

−1
d d (37)

= W
˜

⊺
d; (38)

where W
˜

≡ C
˜

−1
d (F

˜
C
˜

m) (39)

These weights (39) for all samples are entirely equivalent to those for a single
sample (11). Each measured sample of d is weighted by its covariance to an
interpolated point, then these weights are adjusted by the inverse covariance of
the data samples. We now have the advantage of directly relating data covari-
ances to that of the model. This expression is also much easier to generalize
to data that do more than merely subsample the model.
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