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Introduction

The logistic function appears often in simple physical and probabilistic exper-
iments. A normalized logistic is also known as an S-curve or sigmoid function.
The first derivative of this function has a familiar bell-like shape, but it is not
a Gaussian distribution. Many use a Gaussian to describe data when a logistic
would be more appropriate. The tails of a logistic are exponential, whereas
the tails of a Gaussian die off very quickly. To decide which distribution makes
more sense, we must must be aware of the conceptual model for the underlying
phenomena.

In biology, the logistic describes population growth in a bounded environ-
ment, such as bacteria in a petri dish. In business, a logistic describes the
successful growth of market saturation. In engineering, the logistic describes
the production of a finite resource such as an oilfield or a collection of oilfields.

After discussing examples, we will see how a bound to exponential growth
leads to logistic behavior. There are other forms of the logistic function with
extra variables that allow more arbitrary shifts and scaling. First, I limit myself
to the form derived most naturally from the Verhulst equation. Normalizations
clarify the behavior without any loss of generality. Finally, I use a change of
variables for fitting recorded data in physical units.

Examples

Exponential (geometric) growth is a widely appreciated phenomenon for which
we already have familiar mental models. Investments and populations grow
exponentially (geometrically) when their rate of growth is proportional to their
present size. You can take almost any example of exponential growth and turn
it into logistic growth by putting a maximum limit on its size. Just make the
rate of growth also proportional to the remaining room left for growth. Why
is this such a natural assumption?
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Growth in a petri dish

Let us consider the bacteria in a petri dish. This is an easy way to create a
logistic curve in nature, and the mental model is a simple one.

A petri dish contains a finite amount of food and space. Into this dish we
add a few microscopic bits of bacteria (or mold, if you prefer). Each bacterium
lives for a certain amount of time, eats a certain amount of food during that
time, and breeds a certain number of new bacteria. We can count the total
number of bacteria that have lived and died so far, as a cumulative sum; or
more easily, we can count the amount of food consumed so far. The two
numbers should be directly proportional.

At the beginning these bacteria see an vast expanse of food, essentially
unlimited given their current size. Their rate of growth is directly proportional
to their current population, so we expect to see them begin with exponential
growth. At some point, sooner or later, these bacteria will have grown to such
a size that they have eaten half the food available. At this point clearly the
rate of growth can no longer be exponential. In fact, the rate of consumption of
food is now at its maximum possible rate. If half the food is gone, then the total
cumulative population over time has also reached its halfway point. As many
bacteria can be expected to live and die after this point as have gone before.
Food is now the limiting factor, and not the size of the existing population.
The rate of consumption of food and the population at any moment are in fact
symmetric over time. Both decline and eventually approach zero exponentially,
at the same rate at which they originally increased. After most of the food has
disappeared, the population growth is directly proportional to the amount of
remaining food. As there are fewer places for bacteria to find food, then fewer
bacteria will survive and consume a lifetime of food. Although the population
size is no longer a limit, their individual rates of reproduction still matter.

The logistic function can be used to describe either the fraction of the
food consumed, or the accumulated population of bacteria that have lived and
died. The first derivative of the logistic function describes the rate at which
the food is being consumed, and also the living population of bacteria at any
given moment. (If you have twice as many bacteria, then they are consuming
food at twice the rate.) This derivative has an intuitive bell shape, up and
down symmetrically, with exponential tails. The logistic is the integral of the
bell shape: it rises exponentially from 0 at the beginning, grows steepest at
the half-way point, then asymptotically approaches 1 (or 100%) at later times.
The time scale is rather arbitrary. We can adjust the units of time or the rates
of growth and fit different populations with the same curve.

Let us quickly examine two slightly messier examples, to see the analogies.
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Market share

The market share of a given product can be expressed as a fraction, from 0%
to 100%. All markets have a maximum size of some kind, at least the one
imposed by a finite number of people with money. Let us assume someone
begins with a superior product and that the relative quality of this product
to its rivals does not change over time. The early days of this product on the
market should experience exponential growth, for several reasons. The number
of new people exposed to this new product depends on the number who already
have it. The ability of a business to grow, advertise, and increase production
is proportional to the current cash-flow. A exponential is an excellent default
choice, in the absence of other special circumstances (which always exist).

Clearly, when you have a certain fraction of the market, geometric growth
is no longer possible. Peter Norvig coined this as Norvig’s Law: “Any technol-
ogy that surpasses 50% penetration will never double again (in any number
of months).” But let’s also assume we have no regulatory limits and no one
abusing a larger market share (bear with me). This product should still natu-
rally tend to a saturated monopoly of the market. Such market saturation is
typically drawn as a sigmoid much like a logistic. In fact it is a logistic, given
no other mechanisms. After saturation, the rate of change of market share is
proportional to the declining number of new customers. In any given month,
a consistent fraction of the remaining unconverted customers will convert to
the superior product. That is, we have a geometric or exponential decline in
new customers for each reporting period.

Mining and oil

Finally, let us examine the discovery and exhaustion of a physical resource,
such as mining a mountain range, or exploration and production of oil in
an field. The logistic has long been used to predict the production history,
the number of barrels of oil produced a day, in any oil field. The curve also
accurately handles a collection of oilfields, including all the oil fields in a given
country. Such a calculation was first used by King Hubbert in 1957 to predict
correctly the peak of total US oil production in the early 1970’s.

Earliest oil production is easily exponential, like many business ventures.
As long as there is vastly more oil to be produced than available, then pre-
viously produced oil can proportionally fund the exploration and production
of new oil wells. Success also increases our understanding of an area and im-
proves our ability to recognize and exploit new prospects, so long as there is
no noticeable limit to those prospects. At some point though, the amount
of oil in a given field becomes the limiting factor. Like bacteria in a petri
dish, fewer oil wells find a viable spot in the oil field in order to produce a
full lifetime. The maximum rate of production is achieved, very observably,
when half of the oil has been produced that will ever been produced. (That is
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not to say that oil does not remain in the ground, but it cannot be produced
economically, using less energy than obtained from the new oil.)

Oil production from individual oil fields do often show asymmetry, falling
more rapidly or more gently after a peak than expected from the rise. Petroleum
engineers have learned that deliberately slowing production increases the ul-
timate recoverable oil from a field. Gas production of a single field tends to
maintain a more constant rate of production until the pressure abruptly fails,
dropping production to nothing. But while individual fields may have unique
production curves, collections of fields in a region or country tend to follow a
more predictable logistic trend, with the expected symmetry.

A simple population game

We can contrive a simple numerical game that should simulate such growth.
We have a resource that can support a maximum population of 1000 creatures.
We will begin by dropping 10 creatures into this resource. All are likely to
find an unoccupied location. With every generation, each existing creature
has a 10 percent chance of spawning a new creature. These new creatures
drop again at random into one of the 1000 possible locations. If the location
is not previously used, then the creature survives. If the location is already
occupied, then the new creature dies. In early generations, 99 percent of the
possible locations are still free, so each new creature will almost certainly
survive. We expect early generations to show 10 percent geometric growth.
As the population increases, however, available locations decrease and we see
more collisions. By the time 500 of the available locations are filled, only half
of each new generation will survive, dropping the rate of growth to about 5
percent. We will stop the game when 990 locations are full, when each new
creature has only one percent chance of survival.

Here is a short Java program to simulate this population growth.

import java.util.Random;

import java.util.BitSet;

public class LogisticGrowth {

public static void main(String...args) {

Random random = new Random(1);

int capacity = 1000;

BitSet resource = new BitSet(capacity);

for (int i=0; i< 10; ++i) { resource.set(i); }

int population = 0, generation = 0;

while ( (population=resource.cardinality()) < capacity-10) {

System.out.println(generation+" "+population);

for (int spawn=0; spawn<population; ++spawn) {

if (random.nextInt(10) % 10 == 0 ) {

resource.set(random.nextInt(capacity));
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Figure 1: A population simulation

}

}

++generation;

}

}

}

The result of this simulation appears in figure 1.
Similarly, you can imagine bacteria spores landing in a petri dish at ran-

dom. If food is available, a bacterium survives and breeds by launching new
spores. If the food was already consumed by a prior bacterium, then the new
one will die.

Bacteria probably do not fill a petri dish uniformly, but spread from a
center. Most living populations will have some evolved ability to find food.
Yet, such changes to the rules should only accelerate or decelerate growth,
without changing the overall shape.

Similarly, marketing and oil exploration claim to do better than random
selections. And skills are improved by past successes. Even so, the size of each
new generation is still dominated by the size of the existing population and
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the absolute capacity of the resource.

Equations

The scenarios described above do not come close to representing all problems
that can be modeled as a logistic curve. The function solves certain estimation
problems involving the parameters of a Gaussian random variable. Such an
S-curve is also convenient for signal processing applications such as neural
networks. To help our intuition, I will nevertheless explain the notation with
the previous examples in mind.

Keep in mind that these distributions also represent expectations or prob-
abilities. Imagine that each limited resource is composed of a finite number
of unique identities, such as an individual customer, a certain barrel of oil, a
particular bit of food, or an empty spot on the dartboard. The logistic repre-
sents the probability that a unique quantum of a resource will be consumed by
a particular moment in time. Since the same probability distribution applies
to all quanta, you expect an actual realization to resemble a histogram with
roughly the same shape. Thinking of the logistic as a probability distribution
will help when we try fit actual data.

The Verhulst equation and the logistic function

Let us use f(t) to represent a fraction of some quantity limited to values
between 0 and 1. This fraction is a function of time t.

We expect this fraction to increase over time. The rate of increase, the
first derivative, will always be positive:

df(t)

dt
> 0.

Units of time are fairly arbitrary for such problems. For the function to
approach a value of 1 asymptotically, time must continue to positive infinity.
To avoid a small non-zero value to begin growth, we can allow the function to
begin arbitrarily early at negative infinity, where it can approach 0.

The scale of time units, whether seconds or days, is also arbitrary. We
will choose a scale that most conveniently measures a consistent change in the
function. Let us put the halfway point, at zero time so that

f(0) = 1/2. (1)

For earliest values of t, we expect f(t) to increase geometrically. That is,
we expect the rate of increase to be proportional to the current value:

f(t) → 0, and

df(t)

dt
∝ f(t), (2)

as t → −∞.
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Similarly, as time increases and our function approaches unity, we expect
the rate of growth to be proportional to the remaining fractional capacity.

f(t) → 1, and

df(t)

dt
∝ 1− f(t), (3)

as t → ∞.

This assumption is worth dwelling upon in light of our previous examples.
Given an almost complete saturation of our available capacity, growth cannot
be limited any longer by the existing population. The only remaining limita-
tion to continued growth is the size of the remaining opportunities for growth.
If the remaining opportunities shrink by half, then the chance of our getting
one of those opportunities must also decline by half. Here, I find the dartboard
analogy very helpful.

Let us combine these two proportions (2) and (3) into a single equation
that respects both:

df(t)

dt
∝ f(t)[1− f(t)].

For appropriate time units, we can avoid any scale factors and write

df(t)

dt
= f(t)[1− f(t)]. (4)

This is slightly simplified version of the Verhulst equation, which originated in
studies of populations.

The rate of growth at any time is proportional to the population and to
the remaining available fraction. Both factors are always in play, though one
factor dominates when the value of the function approaches either 0 or 1.

By centering this equation at zero time with (1), we can rearrange the
Verhulst equation (4) and integrate for f(x) with

[

1

f(t)
+

1

1− f(t)

]

df(t)/dt = 1,

d

dt
{log f(t)− log[1− f(t)]} = 1,

log f(t)− log[1− f(t)] = t,

log

[

f(t)

1− f(t)

]

= t, and (5)

f(t)

1− f(t)
= exp(t). (6)

Finally, we arrive at the simplest form of a logistic function:

f(t) =
exp(t)

1 + exp(t)
=

1

1 + exp(−t)
. (7)
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Figure 2: The logistic function

See figure 2.
Some versions include include arbitrary scale factors for time or for the

fraction itself. We have avoided those by normalization to fractions and con-
venient time units. Later we will use a change of variables useful for fitting
physical data.

First notice that this equation is anti-symmetric, with an additive constant:

1− f(t) = 1/[1 + exp(t)] = f(−t);

f(t) + f(−t) = 1. (8)

The asymptotic growth at the beginning mirrors the asymptotic limit at the
end. We can think of the used capacity or remaining capacity as mirror images
of each other. This is particularly striking because our rate of uncontrolled
growth in the beginning also determines our rate of diminishing returns in the
end. To lose this symmetry, we would need to introduce different (fractional)
powers in our original proportions (2) and (3).

The derivative df(t)/dt is often a more interesting quantity than f(t) itself.
For example, in oil production, this might be the number of barrels produced a
day (with an appropriate scale factor). It could be the annual growth in market
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Figure 3: The derivative of the logistic function

share, the rate at which a population grows, or the rate of consumption of food.

df(t)

dt
=

exp(−t)

[1 + exp(−t)]2
=

1

[exp(t/2) + exp(−t/2)]2
, (9)

df(0)

dt
= 1/4, and

df(±∞)

dt
= 0.

The maximum rate of increase, by design, occurs at time zero. It is also a
perfectly symmetric bell-shape, rising from zero to a maximum value of 1/4,
then declining again, with exponential tails. In this form you can see more
clearly how the exponential on one side eventually overwhelms the one on the
other. See figure 3.

In this form, the derivative (9) has unit area, integrating to 1. The equation
is also useful as the probability distribution function (pdf) that a given resource
(food, oil, or customer) will be used at a particular moment in time.

Fitting real-world data

Assume you have some data that you think might be described by a logistic
curve. You have the data up to a certain point in time. You might not be
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halfway yet. Can you see how well the data are described by a logistic? Can
you predict the area under the curve, or the halfway point?

From a partial dataset, we do not yet know the ultimate true capacity, and
we use real time units. Let us use another form of the Verhulst equation more
useful for real-world measurements.

To get a form similar to that used by Verhulst for his population model,
we replace

t ≡ r(τ − τ̄), (10)

with τ for measurable time units, with r for an unknown time scaling, and
with τ̄ for an unknown reference time.

We also substitute

f(t) ≡ Q(τ)/k, (11)

where Q(τ) is a measurable capacity or population, and k is an unknown upper
limit, called the “carrying capacity.”

The reference time τ̄ is when we expect to reach half of the maximum
capacity:

Q(τ̄) ≡ k/2. (12)

With these substitutions, we rewrite the Verhulst equation (4) as

dQ(τ)

dτ
= r[1−Q(τ)/k]Q(τ);

dQ(τ)

dτ
/Q(τ) = r − (r/k)Q(τ). (13)

Notice that the measurable quantities on the left of (13) are a linear function
of the measurable quantities on the right. The slope of the line is r/k, and the
vertical intercept of the line is r.

The quantity on the left of equation (13) could be called the fractional rate
of growth. It is the current rate of growth divided by the cumulative value so
far. We do not need to know ultimate rates, capacities, or reference times to
calculate this quantity. At earliest times, when Q(τ) is small relative to k, the
fractional rate of growth (13) achieves a maximum value of r.

We can make a graph with this fractional rate of growth on the vertical
axis, and with the cumulative value Q(τ) on the horizontal. For every time
at which we measure these two quantities, we can place a point on the graph.
All values are positive and fall inside the upper-right quadrant.

If the data fit a logistic curve, then we should be able to draw a straight line
through them. The slope and vertical intercept of the line allow us to estimate
the unknown constants r and k. The vertical intercept, where Q(−∞) = 0,
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is the rate r, and the horizontal intercept is the maximum carrying capacity
Q(∞) = k.

So what about the reference time, τ̄? As time increases our data points
move along this line, but not uniformly. Time units do not appear explicitly,
except as a sampling parameter. The time τ̄ corresponds to the data point
with half of the ultimate capacity, as in (12). We may not have enough data
to identify this point from this graph.

Another drawback to this particular way of graphing data is that early
times will show much greater scatter than later times. When dQ(τ)/dτ and
Q(τ) are small, their ratio will show greater variation for small variations in
either. This particular linearization is more suitable for an age of graph paper.
I prefer to fit the logistic more directly.

Using the τ̄ definition (12) as a boundary condition, we can also rewrite
the logistic function (7) in measurable units:

Q(τ) =
k

1 + exp[−r(τ − τ̄)]
. (14)

Here we can see more clearly that k is the ultimate maximum value of Q(τ).
If we fit Q(τ) directly, our fit should improve with time. The value is a

cumulative one, integrating measurements over longer periods of time. Again,
we can expect more variation at earlier times.

Instead, let us examine an absolute rate of increase P (τ) that we can also
measure:

P (τ) ≡
dQ(τ)

dτ
=

kr

{exp[r(τ − τ̄)/2] + exp[−r(τ − τ̄)/2]}2
. (15)

Note the peak value is P (τ̄) = kr/4.
Now we have a function with more consistent variations over time. The

incremental change during a short interval of time will tend to follow the
underlying distribution, with greater deviations as we shorten the interval.

Actually, it is not difficult simply to scan reasonable values for all three
parameters k, r, and τ̄ and minimize some misfit to P (τ). You can also plot
the misfit as contours of multiple parameters and get a better idea of your
sensitivity to each.

Choosing a best measure of misfit is still necessary. Least-squares, the
default choice for many, makes sense only if you think that errors in your
measurements are Gaussian and consistent over time. This seems unlikely.
Lower magnitudes have less potential for absolute variation than larger ones.
We could instead minimize errors in the ratio of a measured magnitude of
P (τ) to the expected magnitude. Or equivalently, we can minimize errors in
the logarithm of P (τ). If we minimize the square of those errors, then we are
assuming that variations in our measurements are multiplicative, following a
log Gaussian distribution. This is much better, but I think still not optimum.
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Another way to think of the problem is that the logistic derivative P (τ)
in (16) describes a probability of a particular quantity being exploited or con-
sumed at a particular point in time. A given customer, bacterium, or barrel of
oil, is most to appear near the peak time τ̄ rather than near the tails. Given
a certain realization of that probability, our recorded data, what parameters
maximize the probability of that data? It turns out that this likelihood is
maximized by a minimum cross-entropy.

Let our recorded data be pairs of samples {P i, τ i} indexed by i. Then the
best distribution P (τ) should minimize

min
k,r,τ̄

∑

i

{

P i log[P i / P (τ i)]
}

. (16)

P (τ) is a function of these three unknown parameters (k, r, τ̄).
The P (τ) that minimizes this cross-entropy is the one that makes the

actually recorded data most probable.
Because we have not necessarily sampled the entire function, we should

renormalize both P (τ) and P i over the range of available τ i before evaluating.
Normalization effectively ignores the unknown capacity k and fits only the
local shape of the curve. The remaining two degrees of freedom r and τ̄ can
be exhaustively searched with dense sampling. Once these are known, the best
k can be calculated without normalization.

Comparison to logistic regression

Neural networks and machine learning algorithms often use the same family
of S curves for “logistic regression,” but motivate the equations differently.

Logistic regression attempts to estimate the probability of an event with a
binary outcome, either true or false. The probability is expressed as a function
of some “explanatory variable.” For example, what is the probability of a light
bulb failing after a certain number of hours of use? Maybe more relevant,
what is the probability a given drilling program will be economic, given some
measurement of effort?

We start with a probability p of one outcome — say a successful well or a
good lightbulb. That leaves us with a probability of 1 − p for the alternative
— a bad well, or a bad lightbulb. Our explanatory variable x could be a unit
of time, as before, or some other factor. We expect the probability p(x) either
to increase or to decrease strictly as a function of x.

Logistic regression uses the logit function, which is the logarithm of the
“odds.” The odds are the ratio of the chance of success to failure.

logit(p) ≡ log

(

p

1− p

)

. (17)
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This logit function already appeared in equation (5), if you interpret p as f(t).
The logit function and the logistic function (7) are inverses of each other.

Unlike our earlier derivation, we are not going to assume that our explana-
tory t has been normalized and shifted for our convenience, so we will use
different symbols. Determining that scaling and shifting is the work of logistic
regression.

Logistic regression assumes that the logit function (5) is a linear function
of the explanatory variable x.

log

[

p(x)

1− p(x)

]

= β0 + β1x. (18)

Estimating these two constants β0 and β1 finds the appropriate horizontal
scaling and the midpoint of our curve, so that we could redefine a normalized
t ≡ β0 + β1x and use our previous equations.

Fitting data with this curve (18) is still best addressed as a maximum
likelihood optimization. We have a record of successes and failures, each with
different values of the explanatory variable x. We adjust the constants until
the computed probability (18) of these events is maximized.

Alternatively, we are fitting a straight line to a graph with a value of x
as the horizontal abscissa and the logit function (18) as the vertical ordinate.
But a normal least-squares linear regression will not distribute the errors as
correctly as a maximum-likelihood optimization.

The log-odds might seem like an arbitrary quantity to fit, but it has a
connection to information theory. The entropy H of a single binary outcome
with probability p is defined as

H(p) ≡ −p log p− (1− p) log(1− p). (19)

This entropy has a maximum value of log(2) for the probability p = 1

2
, which

is the most unpredictable distribution. When the probability is low (near 0)
or high (near 1), then the entropy approaches a minimum value of 0. A lower
entropy is a more predictable outcome, with 0 giving us complete certainty.

The derivative of the entropy with respect to p gives us the negative of the
logit function:

dH(p)

dp
= −logit(p). (20)

If we assume the logit is a linear function of the variable x then the entropy
is a second-order polynomial, with just enough degrees of freedom for a single
maximum and an adjustable width.


