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Abstract

Seismic images of different vintages often show inconsistent wave-

forms that complicate mapping and interpretation. A popular workflow

cross-correlates overlapping traces wherever any two datasets intersect.

From correlations we can find the time shifts, amplitude scaling, and

phase rotations that tie datasets at these intersections.

For global consistency, we need to adjust each dataset independently

by absolute corrections that best reproduce the relative corrections.

Independent time shifts and amplitude scalars are easily estimated with

a damped least-squares optimization, which we review.

Phase rotations cannot be optimized in the same fashion without

ambiguity in cyclical phase angles. Instead, we begin with phase-shifted

impulses as simplified representations of cross-correlations. We solve for

simplified transfer functions, which then unambiguously determine the

best phase correction for each dataset. A revised objective-function is

optimized with a Gauss-Newton optimization.

Introduction

This paper describes a robust generalized inversion for time, amplitude, and
phase corrections of overlapping and intersecting seismic datasets.

In a well-developed area, we may have overlapping 3D seismic surveys,
2D seismic lines, and even 4D repeated surveys that attempt to illuminate
the same seismic reflections. Different acquisition parameters and different
vintages result in very different wavelet characteristics. Such differences com-
plicate the correlation of seismic sections with sonic logs. Interpreters find it
more difficult to track formation boundaries from dataset to dataset.

We will consider approaches that begin by cross-correlating selected traces
from different surveys near intersection points. Early work by Harper, 1991
and Henry and Mellman, 1988 used these cross-correlations to estimate convo-
lutional wavelets, or transfer functions, that best adjusted each dataset. Later

1



Solving for seismic misties — Harlan 2

simplifications were independently implemented by Mackidd, 1998 at EnCana
and by Bishop and Nunns, 1994. From each cross-correlation they extract rela-
tive time shifts, phase rotations, and amplitude scale factors. The time shift is
generally located at the peak of the analytic envelope of the cross-correlation.
Comparing the strength of the cross-correlation to the strength of a dataset
determines a relative amplitude scaling. The phase rotation is the constant
phase bias remaining in the frequency domain after removing the time shift.
(Equivalently, the best time lag and phase rotation correspond to the slope
and intercept of a line fitting phase in the frequency domain.)

Each of the three corrections are inverted separately to find independent
adjustments for each dataset. Interpreters find such corrections easy to view
for quality control, with minimal risk of damage to spectral information. If the
inversion is robust, then repeating the procedure will not result in any further
improvements.

Mackidd, 1998 preferred to construct explicit systems of equations with
specific constraints to remove non-uniqueness. Bishop and Nunns, 1994 used
a recursive algorithm (essentially Gauss-Seidel) that converged to the same
solution for time shifts and amplitudes.

Both inverted phase rotations with modified versions of their algorithms for
time shifts. Phases, however, require “unwrapping” that repeatedly adjusts by
full cycles of 360 degrees to minimize errors. Such approaches cannot guarantee
that they avoid local minima or that they find a globally optimum solution.

We define all solutions with objection functions that best minimize errors,
with damping to handle non-uniqueness. For optimization, we choose a Gauss-
Newton optimization as described in Luenberger, 1973, and as implemented
by Harlan, 2004 for related problems in Harlan, 2014 and Harlan, 1989. In the
case of time shifts and amplitudes, we obtain the same least-squares solution
as solved by Bishop and Nunns, 1994.

We prefer, however, to avoid fitting spectral phases directly. Instead we
return to the time domain and fit the corresponding phase-shifted impulses.
Instead of adding or subtracting phases, we convolve or correlate these sim-
plified transfer functions. In the time domain, we avoid any need to adjust
phase by an ambiguous number of cycles. This optimization is a specialization
of the cross-balancing algorithm in Harlan, 2015, which is very similar to a
surface-consistent deconvolution as described in Levin, 1989.

Fitting time shifts

We begin by reviewing the numerically simplest optimization of relative time
shifts.

Let us index independent seismic lines or datasets by an integer index i or
j. To align all the datasets, we assume that each line i needs to be shifted by
a time ti, in milliseconds (or meters or feet if in depth). A trace amplitude
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previously appearing at zero time will appear at the sample with this time,
after correction. A negative time correction will reduce the times at which a
particular amplitude appears.

If a pair of lines cross, then we could make a relative correction tij to line
i to make it better tie a line j. If shifts are globally consistent, then relative
corrections can be computed from absolute corrections:

tij = tj − ti. (1)

We can directly measure or estimate these relative corrections, but not the
absolute corrections. Let us use an integer indexm to identify each intersection
at which we measure a relative shift from the data. Each m will index a triplet
of indices {m, i, j}. At each of these intersections m, we will measure a relative
time shift tmij that adjusts line i to match line j better. Selected traces from
each line are cross-correlated so that this lag can be measured from the analytic
peak.

We will assume that errors in measured tmij follow an uncorrelated Gaus-
sian distribution with zero mean. This assumption would imply a maximum
likelihood solution for ti that minimizes the least-squares error between the
measured and computed corrections:

min
{ti}

∑
{m,i,j}

(tmij − tij)
2 (2)

or min
{ti}

∑
{m,i,j}

(tmij − tj + ti)
2. (3)

Unfortunately, this function has a flat bottom with more than one minimum.
We can add a constant to all absolute shifts and still compute exactly the same
relative shifts.

Worse, there may be some linear components that are poorly conditioned,
where large changes in some combination of {ti} result in very small changes
to the total error. A larger area of the objective function may have almost the
same minimum value within the precision of our measurements.

To handle such poorly conditioned solutions, we add a damping term on
the magnitude of absolute corrections. Damping is equivalent to assuming
that inverted corrections also have a Gaussian distribution, then maximizing
the a priori probability (known as a MAP estimate).

min
{ti}

∑
{m,i,j}

(tmij − tj + ti)
2 + ϵ

∑
i

t2i . (4)

We use a damping factor ϵ = 0.0001·M/N , where M is the number of intersec-
tions indexed by m, and N is the number of independent datasets indexed by
i and j. Additionally we add a factor of 0.0001, which is equivalent to assum-
ing measurement errors have about one hundredth the magnitude of typical
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shifts. This factor can be reduced even more without significantly altering
the result. Only a little damping is required to eliminate non-uniqueness and
poorly conditioned components.

This objective function (4) is a purely quadratic function of the unknown
{ti} values. We use a low-memory iterative conjugate-gradient algorithm as
in Luenberger, 1973 and Harlan, 2004.

Damping ensures that the average absolute correction will be zero. Instead,
we can choose certain lines as reference lines and force their corrections to
be any predetermined value, such as zero. To do so, we simply omit these
corrections from the optimization. (Programatically, we can remove elements
from our solution vector, or we can apply conditioning that zeros out these
elements.)

Fitting amplitude shifts

With a few tweaks, we can fit amplitude changes with the same algorithm we
used for time shifts.

We assume each line i needs to be scaled by an absolute amplitude factor
of ai to best match all other lines. If a pair of lines cross, then we could make
a relative amplitude correction aij to line i to make it better tie a line j. If
amplitude corrections are globally consistent, then relative corrections can be
computed from absolute corrections:

aij = aj/ai. (5)

At each intersection m, we also measure a relative correction amij that makes
line i more consistent with the amplitudes in line j. Once again, we want to
fit measured corrections amij by estimating the best absolute corrections {ai}.

In most cases, lines will have already been normalized to some degree,
perhaps to make their root-mean-square (RMS) amplitudes all the same. Nor-
malization does not result in the best overall ties because one side of a dataset
may be stronger in amplitude than in another. But we do expect remaining
amplitude scale factors to be reasonably distributed around a value of 1, with
no large outliers.

To turn this problem into the same linearized problem we just solved, we
will assume that the distributions of scale factors are all log-normal. That is,
the logarithm of ai follows a Gaussian distribution. Multiplying or dividing log-
normal variables results in more log-normal variables, including our computed
aij. The resulting MAP objective function is

min
{ai}

∑
{m,i,j}

[log(amij )− log(aj/ai)]
2 + ϵ

∑
i

log(ai)
2. (6)
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This function is not quadratic in the unknown {ai} and is more difficult to
solve. Instead, if we define the following,

bi ≡ log(ai) and bmij ≡ log(amij ), (7)

then the objective function becomes

min
{bi}

∑
{m,i,j}

(bmij − bj + bi)
2 + ϵ

∑
i

b2i . (8)

This is exactly the same form as our previous quadratic objective function (4)
for time shifts. Here we optimize for {bi}, and as a final step recompute {ai}.

Fitting phase rotations

Superficially, the problem of fitting phase rotations is very similar to those of
previous sections. Relative phase rotations are measured at line intersections,
and are modeled as differences of absolute phase rotations for each line.

Some authors (Bishop and Nunns, 1994, Mackidd, 1998) solve for abso-
lute phase rotations with least-squares approaches very similar to those just
described for time and amplitudes. Unfortunately phase rotations are not
uniquely invertible. A phase rotation of ϕ has the same effect on a trace as
ϕ+2π. As a result, phases are usually limited to a branch such as −π (exclu-
sive) to π (inclusive), or equivalently -180◦ (exclusive) to 180◦ (inclusive).

When minimizing least-squares errors in phases, a small perturbation can
easily cross over a branch cut. Such approaches must update both measured
and estimated phases repeatedly during optimization to allow values outside
the original branch range. Such “phase unwrapping” does not converge well for
larger numbers of intersections and datasets; there is no guarantee of finding
a global minimum.

Phase rotations

We should first clarify the definition of a phase rotation (also known as a
constant phase shift). We will represent all necessary operations in the time
domain without Fourier transforms.

We will write a seismic trace f(t) as a continuous function of a time t.
(Discretization is equivalent to assuming a bandlimited “sinc” function as a
basis for the continuous function.)

We first compute an analytic trace f̃(t) of complex amplitudes by convolv-
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ing our real trace f(t) with an analytic function g(t):

f̃(t) ≡ g(t) ∗ f(t) ≡

∫
g(t− τ)f(τ)dτ, (9)

where g(t) ≡ δ(t) + ih(t) (10)

and h(t) ≡
1

πt
. (11)

The analytic function g(t) is the sum of a Dirac delta function δ(t) and an
imaginary Hibert transform h(t), which are well explained in Bracewell, 1978.

The real part of an analytic trace restores the original trace.

f(t) ≡ Re[f̃(t)]. (12)

The new imaginary component is always orthogonal to the original func-
tion, mapping a cosine to a sine, and a sine to a negative cosine, like a deriva-
tive, but without affecting the amplitude spectrum.

To apply a constant phase rotation of angle ϕ to a trace f(t), we multi-
ply the complex analytic trace f̃(t) by a complex number of unit magnitude
exp(iϕ), then keep just the real part.

f(ϕ, t) ≡ Re[eiφf̃(t)] (13)

= Re{eiφ[g(t) ∗ f(t)]} (14)

= r(ϕ, t) ∗ f(t) (15)

where r(ϕ, t) ≡ cos(ϕ)δ(t)− sin(ϕ)h(t). (16)

A phase rotation is equivalent to convolving with the phase rotation function
r(ϕ, t), which is purely real. We can see a few simple cases easily. A zero-degree
rotation has no effect. A 180◦ rotation reverses the sign. A 90◦ rotation is the
same as applying the Hilbert transform with the opposite sign, so that a sine
becomes a cosine, and a cosine becomes a negative sine.

Successive convolutional phase rotations can be combined merely by adding
their corresponding phase rotations:

r(ϕ1, t) ∗ r(ϕ2, t) = r(ϕ1 + ϕ2, t). (17)

Even better, a phase rotation is a unitary operation, so we can perform the
inverse simply by reversing the sign of the phase rotation.

r(−ϕ, t) ∗ r(ϕ, t) = δ(t). (18)

Because of various symmetries, we also see that

r(−ϕ, t) = r(ϕ,−t). (19)
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And so correlation with a phase rotation will invert a convolutional phase
rotation.

r(ϕ, t) ⋆ r(ϕ, t) ≡

∫
r(ϕ, τ)r(ϕ, t+ τ)dτ (20)

= r(ϕ,−t) ∗ r(ϕ, t) = δ(t). (21)

If we have an instance of the phase rotation function, we can reestimate
its angle:

Define x ≡ r(ϕ, t = 0) and (22)

y ≡ −

∫
r(ϕ, t)h(t)dt; (23)

then y = x tan(ϕ) and (24)

ϕ = atan2(y, x) ≡ Arg(x+ iy). (25)

Here we use a two-argument version of an arc-tangent to get the angle in the
correct quadrant.

Optimizing phase rotation functions

Rather than optimize phase rotations directly, we can equivalently construct
and work with their corresponding phase rotation functions. Phase rotations
that differ by exactly 360◦ have exactly the same representation as functions,
so we avoid any non-unique phase unwrapping problems.

We assume each line i needs to be adjusted by an absolute phase rotation
of ϕi to best match all other lines. If a pair of lines cross, then we could
make a relative phase correction ϕij to line i to make it better tie a line j.
If rotations are globally consistent, then relative corrections can be computed
from absolute corrections:

ϕij = ϕj − ϕi. (26)

At each intersection m, we also measure a relative rotation ϕm
ij that makes line

i more consistent with line j. Once again, we want to fit measured corrections
ϕm
ij by estimating the best absolute corrections {ϕi}.
Instead of fitting these phases directly, we will substitute phase rotation

functions and model them with correlations rather than differences.
For each line i we want to estimate an absolute phase rotation function

r(ϕi, t). We can then compute a relative phase correction function that best
corrects line i to line j by correlating their respective absolute functions.

r(ϕij, t) = r(ϕi, t) ⋆ r(ϕj, t)

= r(ϕi,−t) ∗ r(ϕj, t)

= r(−ϕi, t) ∗ r(ϕj, t)

= r(ϕj − ϕi, t). (27)
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We can fit the measured rotations at intersections with the following damped
least-squares objective function.

min
{φi}

∑
{m,i,j}

∫
[r(ϕm

ij , t)− r(ϕi, t) ⋆ r(ϕj, t)]
2dt+ ϵ

∑
i

∫
r(ϕi, t)

2dt. (28)

In fact, this objective function distributes errors in a very plausible fashion.
These phase rotations, and their correlations, are equivalent to the transfer
functions that would result from an idealized dataset with no inconsistencies
other than phase rotations.

This optimization is a specialization of the cross-balancing algorithm by
Harlan, 2015, which is very similar to a surface-consistent deconvolution as
described by Levin, 1989.

We can optimize for phases in two steps. First we estimate the absolute
rotation functions, then we estimate phase from those functions as in equation
(25).

min
{ri(t)}

∑
{m,i,j}

∫
[r(ϕm

ij , t)− ri(t) ⋆ rj(t)]
2dt+ ϵ

∑
i

∫
ri(t)dt, (29)

where ri(t) ≡ r(ϕi, t). (30)

Notice that this objective function, unlike our previous versions, is quartic
rather than quadratic in the unknown {ri(t)}. Nevertheless, the objective
function is well behaved and convex with a single global minimum.

We use a low-memory Gauss-Newton optimization as described in Luen-
berger, 1973, and as implemented by Harlan, 2004. We iteratively approxi-
mate the objective function by linearizing the correlation in perturbations of
the unknown rotation functions, which approximates the objective function as
a quadratic:

min
{∆ri(t)}

∑
{m,i,j}

∫
[r(ϕm

ij , t)− ri(t) ⋆ rj(t)−∆ri(t) ⋆ rj(t)− ri(t) ⋆∆rj(t)]
2dt

+ϵ
∑
i

∫
∆ri(t)dt.

(31)

We initialize all unknown {ri(t)} with delta functions and solve for perturba-
tions {∆ri(t)} with a standard quadratic conjugate gradient algorithm. Then
we use a line-search optimization to find the best scale factor for all perturba-
tions before updating the reference {ri(t)} functions. Then we relinearize and
solve for perturbations again. Because the objective function is convex, with
a single global minimum, convergence is guaranteed.

From these {ri(t)} functions, we use equation (25) to estimate the best
phase rotations {ϕi} for each dataset. We also can use the simple differences
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in equation (26) to recompute the expected phase shifts ϕm
ij at each intersection

m, after adjusting to the standard branch cut. Any remaining residual errrors
are removed by the quadratic least-squares of previous sections.

We find 23 samples more than adequate for correlations and transfer func-
tions, reconstructing phases with less than one degree of error. Because time
lags are handled separately, the envelopes of these functions remain centered,
reducing the effect of truncations.

We do find that estimated phases can drift somewhat when tens of thou-
sands of lines are inverted without any constraints. That is, the reconstructed
differences at intersections are well within measurement error, but the absolute
phase shifts can vary more substantially at distant degrees of connectedness.
If adjusted lines are no more than a hundred intersections from a constrained
line, then inverted phases avoid such drift.

Conclusions

We began with the premise that time shifts, amplitude scaling, and phase rota-
tions are an adequate correction to tie overlapping datasets. These corrections
are orthogonal and can be optimized independently.

We first reviewed a least-squares approach to time and amplitude correc-
tions, with few differences from previous work. We do, however, prefer damp-
ing to explicit rank reduction. A low-memory iterative optimization scales
well and more conveniently incorporates constraints.

We believe phase corrections are best solved as phase-rotated delta func-
tions representing simplified transfer functions. Such an approach avoids ad-
hoc phase unwrapping and guarantees convergence to a global minimum.

Data may not always agree with these simplifying assumptions. Phase dis-
tortions can change more arbitrarily than just linear time shifts and constant
phase rotations. Amplitudes may also scale differently with frequency. Addi-
tional preprocessing with deconvolution can help, but does not eliminate all
such issues.

It is also possible to fit cross-correlations directly as in Harlan, 2015. The
three independent corrections can be extracted from full transfer functions
estimated for each dataset. Users may find it more difficult to audit and edit
such corrections at intersections.

Ultimately, the popularity of the three independent corrections is the best
testimonial for their effectiveness.
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