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Summary

This short paper derives a simple method of constructing wavepaths (bandlimited raypaths) from
traveltimes using the Eikonal approximation. The Rytov approximation linearly perturbs the
phase of a wavefield with respect to model parameters such as slowness. (The Born approximation
perturbs the amplitude.) When the Green’s functions for point sources are replaced by Eikonal
approximations, the Rytov perturbed wavefield becomes a scaled, differentiated, time-delayed
version of the reference wavefield.

Preliminaries

I will illustrate these approximations with a scalar wave equation for isotropic pressure, assuming
constant density. You can generalize the results for more general elasticity if you are willing to
allow separation of modes.

Let us first choose our notation.

v(x)−2p̈(x, t)−∇2p(x, t) = w(x, t); (1)

or 4π2f 2s(x)2p(x, f) +∇2p(x, f) = −w(x, f). (2)

The pressure p is the non-zero diagonal of the strain tensor. The vector x is the spatial
coordinate. The reciprocal of velocity v is the slowness s. The source term w is the divergence of
body forces. f is the Fourier frequency, using Bracewell’s conventions with −i2π in the exponent
for the forward transform. Transformed and untransformed functions will be distinguished by
arguments.

A Green’s function G solves the following equation.

4π2f 2s(x)2G(x,x′, f) + ∇2G(x,x′, f) = −δ(x− x′), (3)

so that p(x, f) =

∫∫∫
G(x,x′, f)w(x′, f)dx′. (4)

If we perturb the Green’s function definition (3) and discard second-order terms, we find the
Born approximation
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4π2f 2s(x)2∆G(x,x′, f) +∇2∆G(x,x′, f) = −8π2f 2s(x)G(x,x′, f)∆s(x), (5)

with the solution (using (4))

∆G(x,x′′, f) =
∫∫∫

8π2f 2s(x′)G(x,x′, f)G(x′,x′′, f)∆s(x′)dx′, (6)

which defines

∂G(x,x′′, f)
∂s(x′)

= 8π2f 2s(x′)G(x,x′, f)G(x′,x′′, f). (7)

The equivalent derivative for the wavefield is

∂p(x, f)

∂s(x′)
=

∫∫∫
∂G(x,x′′, f)

∂s(x′)
w(x′′, f)dx′′ (8)

=

∫∫∫
8π2f 2s(x′)G(x,x′, f)G(x′,x′′, f)w(x′′, f)dx′′. (9)

Now that we have a conventional Born perturbation, we can compare the Rytov.

The Rytov Approximation and Wavepaths

To arrive at a Rytov approximation, take the wavefield derivative (8) and substitute the phase of
the Green’s function, defined by the complex logarithm

θ(x,x′′, f) ≡ logG(x,x′′, f), and (10)

∂θ(x,x′′, f)
∂s(x′)

G(x,x′′, f) =
∂G(x,x′′, f)

∂s(x′)
, (11)

allowing us to rewrite the wavefield derivative (8) as

∂p(x, f)

∂s(x′)
=

∫∫∫
∂θ(x,x′′, f)

∂s(x′)
G(x,x′′, f)w(x′′, f)dx′′, (12)

where
∂θ(x,x′′, f)

∂s(x′)
= 8π2f 2s(x′)

G(x,x′, f)G(x′,x′′, f)
G(x,x′′, f)

. (13)

In effect, we have only regrouped the wavefield derivative (9) after multiplying and dividing by the
same Green’s function. This regrouping is crucial because further approximations will be applied
to the phase derivative (13) rather than to the Green’s function derivative (7).

Marta Woodward (1989, Ph.D thesis, Stanford) defines a wavepath as the imaginary part of
the phase derivative (13). She plotted the wavepath function over different perturbed slowness po-
sitions x′ while holding frequency f and endpoints x and x′′ constant. The wavepath is stationary
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along a Fermat raypath, but also has a measurable Fresnel width. A multi-frequency wavepath
includes an arbitrary source function w(x′′, f).

We reintroduce the source by defining the phase of the pressure field

φ(x, f) ≡ log p(x, f) (14)

so that

∂φ(x, f)

∂s(x′)
=

∫∫∫
8π2f 2s(x′)G(x,x′, f)G(x′,x′′, f)w(x′′, f)dx′′∫∫∫

G(x,x′′′, f)w(x′′′, f)dx′′′ . (15)

The numerator is the wavefield derivative (8), and denominator is the wavefield p(x, f) from (4)
In reports from the University of Utah Tomography and Migration consortium, G. Schuster

and Yi Luo proposed picking and fitting unwrapped phases rather than traveltimes for seismic
tomography. This gradient (15) allows a descent optimization.

The Rytov approximation is defined as a linearization of the phase of a wavefield with respect
to a particular model parameter such as slowness. Here, the Rytov approximation is given by the
imaginary part of the gradient (15).

The Eikonal approximation

By next adding the Eikonal approximation, we see more intuitively how Rytov perturbations alter
the phase and time lag of a wavefield. We can also modify raypath-based tomography to honor
the resolution of a source with limited bandwidth.

To apply the Eikonal approximation, assume that the Green’s function can be described by a
function of the form

G(x,x′, t) ≡ u(x,x′)δ[t− τ(x,x′)] (16)

or G(x,x′, f) ≡ u(x,x′) exp[−i2πfτ(x,x′)]. (17)

u and τ are real and smooth functions. Note that

p(x, t) =

∫∫∫
u(x,x′)w[x′, t− τ(x,x′)]dx′. (18)

Substitute the approximation (17) into the Green’s function definition (3) for a homogeneous
equation. The terms scaled by different powers of frequency must each vanish, giving the Eikonal
equation

|∇τ(x,x′)|2 = s(x)2, (19)

and transport equations,

∇2u(x,x′) = −δ(x− x′) (20)

and 2∇τ(x,x′) ·∇u(x,x′) + u(x,x′)∇2τ(x,x′) = 0. (21)
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Gradients ∇ and Laplacians ∇2 are taken with respect to the unprimed position x. The Eikonal
traveltime (phase delay) can be extrapolated from the Eikonal equation alone if the corresponding
term dominates. This condition is satisfied if

|∇v(x)| ≪ 2π |f | . (22)

In simple media, the transport equations can be replaced by geometric spreading factors. Reci-
procity allows us to swap the position arguments in the Green’s functions; thus, we can extrapolate
the Eikonal (19) and transport equations (20) and (21) and in whichever direction is convenient.

Applying the approximation (17) to the phase linearization (13), we find

∂θ(x,x′′, f)
∂s(x′)

= 8π2f 2s(x′)
u(x,x′)u(x′,x′′)

u(x,x′′)
exp{−i2πf [τ(x,x′) + τ(x′,x′′)− τ(x,x′′)]}, (23)

∂θ(x,x′′, t)
∂s(x′)

= −2s(x′)
u(x,x′)u(x′,x′′)

u(x,x′′)
δ̈[t− τ(x,x′)− τ(x′,x′′) + τ(x,x′′)], and (24)

∂G(x,x′′, t)
∂s(x′)

= −2s(x′)u(x,x′)u(x′,x′′)δ̈[t− τ(x,x′)− τ(x′,x′′) + τ(x,x′′)]. (25)

The last equation uses the derivative (11).
The linearization (8) for the wavefield can be rewritten as

∂p(x, t)

∂s(x′)
=

∫ ∫∫∫
∂G(x,x′′, t)

∂s(x′)
w(x′′, t− t′)dx′′dt′

=

∫∫∫
−2s(x′)u(x,x′)u(x′,x′′)ẅ[x′′, t− τ(x,x′)− τ(x′,x′′) + τ(x,x′′)]dx′′. (26)

The time lag in this result (26) is the time difference between the fastest path between two points
and the fastest path passing through any scattering point x′ where slowness is perturbed. This
kernel integrates all slowness perturbations to get a perturbation of the wavefield, as we require
for tomographic inversion. Unlike the Born approximation, these scatterers cause phase delays
instead of reflections.

Point Sources

Finally we can examine a point source to see how this linearization affects a single two-point
raypath. A point source requires that

w(x, f) = w(f)δ(x− x0), then p(x, f) = G(x,x0, f)w(f). (27)

With the Eikonal approximation, we find

∂p(x, t)

∂s(x′)
=

∫
∂θ(x,x0, t− t′)

∂s(x′)
p(x, t′)dt′ (28)

= −2s(x′)
u(x,x′)u(x′,x0)

u(x,x0)
p̈[x, t− τ(x,x′)− τ(x′,x0) + τ(x,x0)] (29)

= −2s(x′)u(x,x′)u(x′,x0)ẅ[t− τ(x,x′)− τ(x′,x0) + τ(x,x0)]. (30)
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We can easily compute this linearization from extrapolations of the Eikonal and transport equa-
tions. Reciprocity allows us to extrapolate the Eikonal traveltimes from each endpoint of a par-
ticular path.

The phase, width, and contours of the two-point wavepath (30) are dominated by the second-
time derivative of the waveform ẅ(t). The stationary points on this wavepath are along the fastest
raypath. Lags are simply the difference in time between a perturbed path and the fastest path.
The amplitude scaling (u(x,x′)) controls the decay of the wavefield strength away from the fastest
path.

Numerically one could calculate this wavepath from explicit traveltime extrapolation methods,
from either finite-differences or ray methods. Extrapolate traveltimes from both endpoints to the
entire region of interest and sum the two tables. Subtract the minimum value from this total, and
the wavefield values (30) as a function of this lag.


