GEOPHYSICS, VOL. 53, NO. 7 (JULY 1988); P. 932-946, 11 FIGS.

Separation of signal and noise applied to vertical seismic profiles

William S. Harlan*

ABSTRACT

Inversion of the band-limited one-dimensional VSP
response is nonunique because impedance functions
with very different statistics produce equivalent re-
sponses. Least-squares methods of inversion linearly
transform noise and tend to produce impedance func-
tions with a Gaussian distribution of amplitudes. 1
modify a least-squares inversion procedure to exclude
nonzero impedance derivatives that are significantly in-
fluenced by noise. The resulting earth model shows
homogeneous intervals unless the data have reliable in-
formation to the contrary.

The data are modeled with a one-dimensional wave
equation and three invertible functions: acoustic im-
pedance, a source wavelet, and the traces’ amplification.
First, a linearized least-squares inverse perturbs the
source function to model the downgoing wave. A relin-

earized inverse finds perturbations of all three modeling
functions to account for first-order reflections. Further
iterations explain higher order reflections.

To estimate the reliability of impedance pertur-
bations, each linearized inversion is repeated for pure
noise that equals or exceeds the noise in the data. Am-
plitude histograms are used to estimate probability den-
sity functions for the amplitudes of the signal and of the
noise in the perturbations. Nonzero impedance deriva-
tives are accepted as reliable if, according to the prob-
ability functions, the perturbations contain, with a high
probability, only a small amount of noise.

For a set of VSP data provided by L’Institut Francais
du Petrole, four iterations allowed only a few nonzero
impedance derivatives and modeled a recorded VSP as
well as did a least-squares inversion that accepted all
proposed perturbations. Estimated probability densities
for the remaining signal and noise were used to extract
a tube wave that contained little signal.

INTRODUCTION

Amplitudes of reflected seismic waves contain much infor-
mation on high-frequency changes in acoustic properties, par-
ticularly impedance; but inversions of surface surveys lack
information on the phase of the source waveform and local
background wave velocities. Vertical seismic profiles (VSPs)
contain sufficient redundancy to invert for source waveform
and background velocities.

VSP interval velocities have proven to be easily determined
by inversion of the arrival times of the first arriving waves
(Stewart, 1984). This velocity set differs significantly from that
measured by a high-frequency sonic log (Stewart et al., 1984).
Separation of upgoing and downgoing waves allows one to
compute an effective source waveform at every recorded
depth. With these source waveforms, one can invert for the
impulse response at every depth and thereby begin to estimate
reflection coefficients and high-frequency impedance changes

(Grivelet, 1985). Questions common to other inversions then
arise: will the inverted model misinterpret irrelevant infor-
mation or present more detailed information than the data
contain?

Previous work has been aimed at answering these questions.
For example, Lanczos’ (1961) singular-value decomposition
and damped least-squares inversion (Menke, 1984) suppress
cigenvectors that are poorly preserved by a linear modeling
equation. Stewart (1984) found damped least-squares inversion
to be sufficient for the well-determined inversion of VSP inter-
val velocities. As a drawback, eigenvectors rarely correspond
to simple physical structures.

Claerbout and Muir (1973), Wiggins (1978), Gray (1979),
and Thorson and Claerbout (1985) assumed that their data
resulted from independent, non-Gaussian parameters. They
optimized functions that encouraged details of the inverted
parameters to be isolated, sparse, spikey, and parsimonious.
Similarly, Macé and Lailly (1984) used an #, constraint on
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impedance derivatives to guarantee a unique inversion of the
VSP. Grivelet (1985) used detection to invert a VSP for an
impedance function with sparse nonzero reflection coefficients.

In this paper, I suggest a statistical inversion step whose
purpose can be summarized with the following statement: do
not complicate the model with details that may explain only
noise in the data. The definition of a simple model is crucial.
As an example, this paper suppresses unnecessary nonzero
derivatives in an initially homogeneous impedance function.
The following section shows the magnitude of the problem
posed by nonuniqueness.

NUMERICAL NONUNIQUENESS IN
ACOUSTIC INVERSION

Band-limited seismic data inversion can be nonunique even
with redundant VSP data. Similar vertical-incidence VSP re-
sponses can be generated from one-dimensional acoustic im-
pedance functions that differ considerably from one another.

Figures la and 1b show two alternative impedance func-
tions. Some details correlate, but on the whole they are strik-
ingly different. Figures 2a and 2b show the corresponding
modeled VSPs. Each VSP is modeled with a one-dimensional
(1-D) wave equation and three other input functions: a
lengthy source waveform, irregular geophone depths, and un-
equal amplification of traces. The two modeled VSPs have
negligible differences, as shown when the second is subtracted
from the first (Figure 2c).

The first impedance function (Figure 1a) has a blocky quali-
ty, with wide intervals of constant impedance. The second
function (Figure 1b) appears more periodic and monochro-
matic. The two can be compared by mentally smoothing the
first function ; mentally sharpening the second is more difficult.
The depth derivative of impedance, roughly a measure of re-
flectivity, displays the qualitative difference better. Derivatives
of the first impedance function (Figure 3a) have fewer nonzero
values than those of the second function (Figure 3b).

If one assumes a homogeneous impedance function as the
simplest default model, then the nonzero derivatives contain
all unpredictable details. To model the VSP, the first im-
pedance function requires fewer nonzero derivatives than does
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F16. 1. Acoustic-impedance functions obtained by inversion of
a recorded VSP: (a) impedance resulting from a method that
suppresses impedance derivatives when noise influences the
value too greatly; (b) impedance resulting from a least-squares
inversion. [(a) is blockier, with wide intervals of constant im-
pedance; (b) appears more monochromatic, with few striking
details.]

the second function. The zero derivatives can express either a
lack of information or a genuinely homogeneous interval.

The impedance function in Figure 1b is a least-squares in-
version of a VSP and so shows ¢, or Gaussian statistics. An
amplitude histogram of the derivatives in Figure 3b is fit very
well by a Gaussian distribution, but a histogram of Figure 3a
is not. Incoherent noise in the data is transformed linearly by
least-squares inversion and so tends to have a Gaussian distri-
bution. The impedance function in Figure la is from a modi-
fied least-squares algorithm that accepts perturbations of im-
pedance derivatives only if these perturbations are unlikely to
have resulted from incoherent noise. The following section
describes the statistical tools used for this inversion.

DEFINING AN INVERSION

Interpretation of a nonunique inversion should begin with
the most reliably determined aspects of the model. The follow-
ing definitions and assumptions will be used to define reliabil-
ity:

(1) Model data as the sum of two random processes:
noise and (nonlinearly) transformed signal. Let the
signal determine the parameters of the physical mod-
eling equations.

(2) Choose the modeling transformation so that the
signal parameters can be treated as statistically indepen-
dent random variables (e.g., impedance derivatives).

(3) Define events as the changes that appear in mod-
eled data when a signal parameter is changed from its
simplest default value (e.g., reflections from an im-
pedance derivative).

(4) Assume that samples of noise show none of the
spatial statistical dependence (coherence) of signal
events. {For example, tube waves and P waves have
unequal velocities and coherences; i.e., if P waves are
signal, tube waves are noise.)

(5) A reliable perturbation of a signal parameter
should not model an event that can be easily described
by a chance combination of noise. (A weak modeled
reflection may attempt to fit a random alignment of
strong noise.)

Not all data need be inverted as signal or noise. An iterative
inversion should converge on the most reliable parameters
first because these limit the reliability of later perturbations.
The following outline describes the algorithm to be used.

(1) Find perturbations of model parameters from a
linearized least-squares inverse of the recorded data (cf.,
Macé and Lailly, 1984).

(2) For comparison, invert pure noise that is equal to
or greater than the noise in the data (cf., Harlan et al,,
1984).

(3) Take amplitude histograms of the results of steps
(1) and (2) and use these to estimate probability density
functions for the signal and noise in the model pertur-
bations.

(4) Using these probability functions, accept pertur-
bations that have a low percentage of noise with a high
probability. [Compare with the detection step of Grivel-
et (1985).]

(5) Relinearize the modeling equations and repeat.
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The least-squares inversion involves by far the most program-
ming and computation time of the algorithm. The statistical
test of reliability modifies the least-squares algorithm at only
one point, just before the addition of the perturbations to the
reference model. The following section will construct the least-
squares inverse.

A GLOBAL OBJECTIVE FUNCTION

This section will discuss the modeling equations and the
least-squares objective function used to prepare linear pertur-
bations of the physical parameters. This procedure makes two
important modifications to the model and objective functions
of Bamberger et al. (1982) and Macé and Lailly (1984): (1) the
amplification of traces is included as an invertible parameter
and (2) the objective function is placed in quadratic form to
facilitate an iterative least-squares linearization.

The differential system

As in Macé and Lailly (1984), the 1-D acoustic wave equa-
tion is used to model zero-offset VSPs. All interbed multiple
reflections are modeled, to the limit of the time sampling rate.
The effect of spherical spreading will be approximated by pre-
scaling data amplitudes with arrival time. The following
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system of equations models the wave field:
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W(x, t) is the time derivative of the vertical displacement mea-
sured by geophones at time ¢ and at a pseudodepth x. x is
measured by the direct traveltime from the depth of the wave

source:
? dz
x = .
o Up(z)

z is the true depth; and v,(z) is the P-wave velocity as a
function of depth. o(x) is the acoustic impedance, equal to the
product of velocity and density. g(z) is the seismic source, pro-
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FIG. 2. VSPs modeled from the two impedance functions of Figure 1 using the acoustic wave equation and a long
source function. (a) and (b) correspond to Figures la and 1b, respectively. Subtracting these two VSPs shows their

negligible differences in (c).
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FIG. 3. The first derivative of impedance with depth, roughly a
measure of reflectivity, highlights differences between the two
functions. (a) and (b) correspond to Figures la and 1b, respec-
tively. (a) is sparser, with a higher number of near-zero values.

portional to the time derivative of the traction at the surface.
Assume that the source and its derivative are zero at time
zero. Equation (4) is necessary to complete the Neumann
boundary condition of equation (2}, appropriate to a free sur-
face. X is a depth sufficiently large so that no reflections can
be received in the recorded time.

The data are assumed to be measured at a set of depth
points {x,}, which can be irregular and sparse, for0<t<T.
The source is assumed to be slightly above the first geophone.
Such a source describes all near-surface reverberations and
also compensates for any reflections from an incorrectly
placed free surface.

Notice that the impedance and source functions can be
scaled by any two constants as long as the product of the
constants is 1. For convenience, the impedance will be given
an expected value of 1.

Trace amplification and nonuniqueness

Irregular coupling of geophones and variable shot strengths
can vary the amplification of traces considerably. Such
changes introduce some nonuniqueness into the estimates of
acoustic impedance. The VSP used in this paper showed am-
plitudes that varied as much as 30 percent for equivalent
events on neighboring traces. Changes in impedance cannot
model such rapid amplitude changes without creating spuri-
ous reflections.

For this reason a third function, the trace amplification r(x),
is introduced for inversion. After the data y(x, t) are modeled
from the impedance and source functions with equations (1)
through (4), each trace is scaled by the amplification:

y(x, ) = r(x) y(x, 1), 5

Unfortunately, low-frequency changes in the amplification can
also be explained by low-frequency changes in the impedance
function: such changes affect only the recorded amplitude of
displacement and do not create reflections. Low frequencies
should be subtracted from inverted impedance logs if decep-
tive structure from uneven trace amplification is to be avoid-
ed.

A least-squares objective function

To find least-squares estimates of the impedance, source
waveform, and trace amplification, I minimize

T 2 T
J1=C;ZZJ [d(x,.,t)—y’(xi,t):l dt+Cg‘2j g dt
i 0 (]

., X /do\? . 2
+ C, L (E) dx+C,22i|:r(x,-)-—1]. ©)

The Cs are the assumed standard deviations of the random
variables. ¥'(x, t) is a function of the three arrays of model
parameters. 0 < x < X is the interval over which the im-
pedance is to be inverted. Numerically, the first term of equa-
tion (6) minimizes the error between the measured data and
the modeled data; the other terms encourage simplicity (less
energy) in the inverted parameters.

Bamberger et al. (1982) and Macé and Lailly (1984) used an
inequality constraint on the #, norm of the differentiated im-
pedance rather than the least-squares penalty term used in
equation (6). An /, constraint (or penalty function) has consis-
tently required a great many optimization iterations before the
impedance function is noticeably simplified. Most importantly,
an impedance penalty function or constraint ensures stability
in the optimization algorithm; for this purpose, the least-
squares form serves equally as well as an ¢, constraint. The
quadratic form is more convenient for gradient optimization.

The depths of the geophones must be treated as a fourth
1-D array requiring inversion. This function is estimated in a
preliminary process that windows and crosscorrelates the
wave that arrives first, just as is done by automatic statics
programs. Since the depths of the geophones are quantified in
terms of the direct arrival times, the measured depths of the
geophones (in meters) cannot be used to calculate these values.

Assumptions about impedance

The inversion defined by the objective function (6) does not
make use of all prior information available on the impedance
function. The most important omission is that interval veloci-
ties can be calculated from the earliest arrival times and the
measured depths of geophones; interval velocities are strongly
related to impedances. In addition, high-frequency P-wave
acoustic impedance logs are routinely measured in wells, par-
ticularly when VSPs are recorded.

This information has been omitted in order to examine the
information available from the relative strengths of reflected
waves. The impedance function cannot be inverted from am-
plitude changes in the direct arrival alone because such
changes can also be explained by changes in trace amplifi-
cation. This situation better resembles the less redundant data
recorded at the surface, where direct arrivals and logs are
unavailable.

Let us make the following statistical assumptions: Assume
that differentiating impedance with depth creates a function
whose samples have negligible statistical dependence. In other
words, assume that knowledge of the derivative at one depth
tells little about the magnitude of derivatives at other depths.
Assume also that a particular magnitude is equally likely at all
depths (stationarity). The samples of a differentiated im-
pedance function will thus be treated as an independent, iden-
tically distributed (IID) random process.
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The least-squares penalty function in objective function (6)
treats do(x)/dx as IID but additionally assumes that the sam-
ples are Gaussian [see Kendall and Stuart (1979) for a deri-
vation of such objective functions as maximum-likelihood
solutions]. Inversion with this objective function takes advan-
tage of the nonuniqueness to encourage a very Gaussian im-
pedance function. Similarly, I found that the #, norm pro-
duces impedance derivatives with an exponential distribution,
which may be closer to the true distribution. The objective
function will not be modified for a third arbitrary distribution
(although well logs should allow a good guess). Instead, per-
turbations of the impedance function will be refused if their
effect on the data is poorly distinguishable from that of noise.

ESTIMATION OF SIGNAL AND NOISE

The modeling equations and objective function of the pre-
vious section define an inverse for the modeling parameters,
but complete optimization can be impractical. Very different
solutions (such as in Figure 1) can appear almost equally opti-
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mum in a flat-bottomed objective function. This section de-
scribes how a partial optimization can be modified to mini-
mize the effect of noise on the estimated signal.

Iteratively linearized least-squares inverses

Let the data, the recorded VSP, be a sum of noise and
transformed signal:

d;=f(s)+n

or

@]
d=f(s) +n

The signal array s contains three sets of parameters from the
impedance, source, and trace amplification. The nonlinear
transform f is implicitly defined by a stable finite-difference
solution of equations (1) through (5). The noise includes all
data components not modeled by this system of equations,
such as Gaussian background noise (incoherently scattered
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FiGs. 4a, 4b. (a) A recorded VSP. First arrival times parameterize the irregular depths of traces. (b) Gaussian noise, a
tube wave, and weak uninverted signal obtained by subtracting modeled waves from (a).
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waves), bad traces, tube waves, dispersed and absorbed wave-
let frequencies, etc.
If we write a linearized transformation as

1(s° + As) = f;(s9) + X FYAs;, (8)

then the least-squares estimate of the perturbed signal mini-
mizes a quadratic objective function:

min {Z C;2(s) + As)?

As

+ZC,”2[di—fi(s°)—ZF§}Asj] } ©

This quadratic objective function (9) can be minimized with
the conjugate-gradient algorithm (see Luenberger, 1984) and
with the adjoint and linearized modeling equations (Appendix
A). If a minimum of objective function (6) is to be found
(though not guaranteed), then this linearization must be re-

peated.
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An example of noise extraction

Estimates of reliable signal will improve if reliable noise is
iteratively estimated and removed from the data. Noise esti-
mates likewise improve after removing estimated signal. I shall
now illustrate this outermost loop of the inversion.

Figure 4a contains a portion of a VSP provided by L’Insti-
tut Francais du Petrole. This section contains considerable
Gaussian noise. A strong tube wave violates the physical as-
sumptions of the modeling equations and acts as strong addi-
tive non-Gaussian noise.

To estimate the signal present in these data, objective func-
tion (6) is minimized with four linearized perturbations, as
defined by objective function (9). Because noise is the object,
the appearance of the impedance function is not considered.
Subtracting the modeled signal (similar to Figures 2a and 2b)
from the original data reveals the Gaussian noise, tube wave,
and weak uninverted signal (Figure 4b).

After the modeled signal is removed, the most reliable noise
is estimated. Using the statistical techniques elaborated in the
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following sections, I zero those samples of the residual data
that do not contain, with a sufficient probability, a high per-
centage of noise. Only the most non-Gaussian noise, the tube
wave, has been extracted (Figure 4c). The Gaussian noise is
too easily explained as the sum of coherent Gaussian signal.
The most reliable noise is subtracted from the original data
(Figure 4d), removing a source of error in the first estimate of
signal. This cleaner VSP is now used in place of the recorded
data in subsequent iterations.

Insufficiency of the linear estimate

For the first linearized inversion of the VSP in Figure 4d,
no knowledge of the signal parameters is assumed. Impedance
is given a constant value of 1, and its derivatives, a small
variance of 0.01. The source is set to zero, and the trace ampli-
fication function r(x) is set to one—both with large variances.
The variance of the noise is pessimistically set equal to that of
the recorded data.

The first minimization of the quadratic objective function
(9) perturbs only the source function and accounts only for
downgoing waves without scattering (Figure 5a). The source
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function changes little in later iterations, though it is free to
change. The first and higher-order scattered waves appear
clearly in the residuals of Figure 5b (equal to Figure 4d minus
Figure 5a).

Each linearization allows the inversion to consider an ad-
ditional order of scattering. Because the downgoing wave field
is now nonzero, the second least-squares linearization can per-
turb impedance and account for first-order scattering. Figure
6a displays the new first-order reflections modeled by the lin-
earized acoustic equations (A-1) through (A-5). All three signal
functions receive perturbations. The perturbations of the im-
pedance derivatives appear in Figure 6b. The uneven amplifi-
cation of traces is evident in the modeled reflections. The
amplification, like the source function, changes little in later
iterations.

A simple test shows the effect of noise on the impedance
perturbations. To make the coherent signal become inco-
herent and behave as noise in the inversion, I randomly reor-
der the traces of Figure 5b in Figure 7a. This reordering does
not affect the statistics of the incoherent noise. I repeat the
linearized least-squares inversion on the noise and find the
perturbed impedance derivatives of Figure 7b. Note that the
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F1G. 5. (a) The downgoing wave ficld obtained by perturbing only the source waveform (first iteration). (b) The
residuals obtained by subtracting (a) from the data of Figure 4d. (All scattered waves are left.)
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perturbations are far from zero. These false details result from
random alignments of noise. This much amplitude could be
attributed to noise in the perturbation of Figure 6b. More
complicated schemes of generating noisy data sets (with the
same data amplitude distributions) gave similar results.

Distinguishing transformed signal and noise

The advantage of the least-squares linearization is that the
optimum perturbation from objective function (9) remains a
linear function of the uninverted events in the data. The linear
perturbation can be written as the following transformation:

d;=As; = Z FiTj1 [dj Afj(so):l'

This notation indicates a least-squares rather than a perfect
inverse.

Probability density functions will be used to quantify the
distribution of signal and noise amplitudes in the pertur-
bation. The probability that a random variable falls within a

(109)
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given range of amplitudes is found by integrating the prob-
ability function over that range. Because of the assumption
that signal and noise are stationary, many parameters should
result from the same probability functions. Subscripts will be
dropped from individual samples.

The transformed signal and noise remain additive in a
transformed data sample: d = s + n'. Define s’ = F~![f(s)
— £(s®)] and n’ = F~'n. When independent random variables
add, their probability density functions convolve:

(11

A probability function is estimated for the transformed data
(Figure 6b) with an amplitude histogram (Figure 8a). The
transformation of the artificially incoherent data (Figure 7b)
effectively overestimates the amplitudes of the incoherent
noise; a histogram gives a pessimistic estimate of the noise
probability function (Figure 8b).

A deconvolution of equation (11) estimates a probability
function for the transformed signal. Let us assume that the
pessimistic estimate of the noise probability function is correct

Padx) = p(x) * p,(x).
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F1G. 6. A relinearized inversion of the residuals of Figure 5b models the first-order scattered waves in (a) with linearized
modeling equations. The impedance-derivative perturbations (b) account for these new events.
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and find the signal probability function that maximizes the
probability of the data histogram. This estimate equivalently
minimizes the following cross-entropy function, with appropri-
ate constraints of positivity and unit area:

min fpd'(x) In [pd'(x)/p,r(x) *p..r(x)] dx. (12)
Psi(*)

Figure 8c displays the resulting signal probability density
function. The convolution of the estimated signal and noise
functions (Figure 8d) cannot equal the data histogram because
the inner peak of the noise function is wider than that of the
data. The tails of the convolved function match the tails of the
data histogram very well. See Appendix B for more details on
the deconvolution method.

Extracting reliable signal

The expected amount of signal in samples of the trans-
formed data can now be calculated from the probability func-
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tions for the signal and the noise. A Bayesian estimate (see
Papoulis, 1965) of s’, when &’ is known, is

§ =E(s'|d) = fxps,h,,(x fd’) dx

f xpAx)p,dd’ — x) dx

— . 3
pold) 13

For the probability functions of Figure 8, the expected value
of 5’ is very close to the value of d', essentially an equality. The
expected value of noise, for all data amplitudes, is almost zero.
For other applications or other data, this estimate could alter
amplitudes considerably [see Godfrey ( 1979)].

Now let us calculate the reliability of the Bayesian esti-
mates. Accept an estimate as reliable if the percentage error
(equivalent to the percentage noise) is less than say 5 percent
with greater than 95 percent probability. Define the reliability
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FiG. 7. The influence of noise on the impedance perturbation of Figure 6b. (a) The residual data of Figure 5b
rearranged to destroy all coherence. (b) Impedance-derivative perturbations calculated from the noise as before.
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FiG. 8. (a) Histogram of the perturbation of Figure 6b estimating the probability density function of the transformed
signal plus noise. (b) Histogram of Figure 7b overestimating the probability function of the transformed noise. (c) The
signal function estimated by deconvolving (a) with (b). (d) The convotution of (b) with (c). [(a) is imperfectly reproduced

because (b) has a wide central peak.]
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FI1G. 9. A measure of reliability. (The largest amplitudes are the
most reliable.) The probability functions of Figure 8 are used
to calculate the probability that the impedance derivatives in
Figure 6b contain less than 5 percent noise.
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F1G. 10. (a) The impedance function perturbed with the eight
most reliable derivatives of Figure 6b. (b), (c), and (d) show the
results of further iterations. Further perturbations have less
than 95 percent reliability of having less than 5 percent noise.
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by

reliability = P[—cs” <8 —§ <cs| d’]

8 + c8
f p()pAd — x) dx
— $ — 8’ . ( 1 4)

f po(X)pAd’ — x) dx

-

¢ = 0.05 or some other small fraction of allowable noise.

Figure 9 shows the reliability of the Bayesian estimate as a
function of the amplitude d'. The high amplitudes are the most
reliable, and the low amplitudes the least. Quite a few samples
of the perturbations in Figure 6b show greater than 95 percent
reliability. To present a slow convergence, only the eight most
reliable perturbations were accepted, and others were set to
zero. Figure 10a shows the corresponding impedance function.
Figures 10b, 10c, and 10d show the impedance functions of
later iterations. Figure 11 shows the VSPs that are modeled
for each of these four iterations. Each iteration adds details of
decreasing reliability to the impedance. Further perturbations
are weak and have less than 95 percent reliability (for less than
5 percent noise).
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FiG. 11. Modeled VSPs corresponding to the impedance lo

used. Further iterations chan

To obtain the impedance function of Figure la, I perform
one last iteration that accepts all perturbations, whether reli-
able or unreliable. The resulting model (Figure 2a) is little
better, and the structure of the impedance function is only
slightly blurred. The small gradient shows that, in effect, ob-
jective function (6) has reached a minimum. The impedance
function of Figure 1b was obtained by accepting the pertur-
bations of all iterations as reliable, giving a least-squares solu-
tion. The two solutions of Figure 1 minimize objective func-
tion (6) equally well, showing that the function has a relatively
flat bottom. The constraint of reliability on the signal pertur-
bations effectively limits the class of impedance functions to be
considered.

Extracting reliable noise

The early extraction of the tube wave from the VSP used
the same statistical tools as the extraction of the signal. The
algorithm follows.

(1) Subtract previously modeled signal from the data
and take a histogram of the residual data amplitudes.
(2) Estimate the uninverted signal by a relinearized
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gs of Figure 10. The unlinearized acoustic wave equation is
ge the modeled data negligibly.
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inverse of the residual data [minimize objective function
9]

(3) Estimate the probability density function of the
uninverted signal amplitudes with a histogram of the
linearly modeled residual data [from equations (A-1)
through (A-5)].

(4) Estimate the probability function for the noise by
deconvolving the probability functions from steps (1)
and (3).

(5) Extract samples of the residual data that contain
a large percentage of noise with a large probability.

The residual data appear in Figure 4b, and the extracted noise
in Figure 4c.

To avoid distorting the waveforms of the noise, the extrac-
tion of reliable samples must be smoothed over time. The
peaks of wavelets have the largest amplitudes and are more
easily recognized as noise than are the high-derivative zero
crossings between peaks. A linear phase shift of 90 degrees
maps the wavelet zeros to peaks and the peaks to zeros. Dif-
ferent constant linear phase shifts will map other points of the
wavelet to peaks. Let us consider any particular point to be
reliable if the highest amplitude resulting from a linear phase
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shift is reliable. This maximum amplitude is equal to the ana-
lytic envelope calculated with the Hilbert transform (see
Bracewell, 1978). The reliability of a sample of noise was cal-
culated from its analytic envelope rather than from its actual
amplitude. The histograms were not altered because they suf-
ficiently represented the amplitudes of phase-shifted data.

CONCLUSIONS

The acoustic-wave equation ignores many physical parame-
ters that must affect VSP data, yet the equation models the
transmitted and reflected P waves very well. Moreover, very
different 1-D acoustic-impedance functions can model the
two-dimensional data equally well. To emphasize the infor-
mation available from reflected waves, well logs and measure-
ments of interval velocities were not used to constrain the
impedance function. To choose among equally satisfactory
models of the data, the inversion avoided unnecessary nonzero
derivatives in the impedance. Unless the data contained reli-
able information to the contrary, the inversion assumed that
impedance was homogeneous.

Statistical assumptions about the signal and noise should be
kept in mind when interpreting the results or when applying
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FIG. 11. Modeled VSPs corresponding to the impedance logs of Figure 10. The unlinearized acoustic wave equation is
used. Further iterations change the modeled data negligibly.
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the method to other data (see Harlan et al., 1984). The esti-
mates of reliability are effective only if the events of physical
interest can be modeled by statistically independent parame-
ters of the signal. Furthermore, enough signal parameters
should have similar statistics for histograms to be taken. Only
non-Gaussian signal parameters will be distinguishable from
noise. Gaussian signal remains Gaussian after a linear trans-
formation has been performed, as does any unextracted noise.

Noise was assumed to have none of the spatial coherence of
the signal. The recorded tube wave has a much slower velocity
than do other waves and so acts as strong additive non-
Gaussian noise. Ground roll behaves similarly in surface field
gathers. Many varieties of coherent noise, such as sea-floor
diffractions in ocean data, can be extracted if they are defined
with their own modeling equations.

Not all signal and noise parameters should or need be en-
couraged toward sparseness and non-Gaussianity. A least-
squares inversion gives the maximum-likelihood estimate of
genuinely Gaussian signal and noise. The least-squares objec-
tive function sufficed for the VSP source wavelet and the trace
amplification functions, both without useful geologic infor-
mation. Also, signal and noise can be considered to contain
both Gaussian and non-Gaussian components. Once the non-
Gaussian component has been successfully extracted, least-
squares methods will invert the Gaussian residuals.

In summary, this inversion does not perturb a signal param-
eter if the corresponding event in the data can be easily de-
scribed by noise. Signal adds constructively in the calculation
of the least-squares perturbations; noise adds destructively. To
estimate the signal present in the perturbation, histograms of
the perturbations are compared to histograms of inverted arti-
ficial noise. The histograms help estimate probability functions
for the signal and noise, which in turn help estimate the prob-
ability that a perturbation contains a small percentage of
noise.
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APPENDIX A
MINIMIZING THE VSP OBJECTIVE FUNCTIONS

The inversion of a VSP introduced a global objective func-
tion (6) and a quadratic objective function (9). This appendix
presents the equations that are necessary for gradient methods
to minimize these functions.

Let us invert for a source function whose length equals the
recorded time of the data: (0 < ¢ < T). The impedance func-
tion can be inverted down to the maximum depth X, from
below which no reflections can be received in the recorded
time. Varying the impedance at the deeper points will not
affect the modeled data. This maximum depth equals X =
Xpax + (T — Xpa)/2, where x,.  is the depth of the deepest
geophone. '

I use the strategy of optimal control (Lions, 1968) for the
minimization of objective function (6). The application to the
1°D inversion of seismic waves derives from Bamberger et al.
(1982) and Macé and Lailly (1984). These previous appli-

max. X

cations use the /, norm to constrain impedance and do not
iteratively linearize modeling equations during inversion.

For each of the iterations, the modeled data y'(x, t) can be
linearized with respect to perturbed model parameters:

o2 0 0 22 0 i)
cﬂ—By———-(c———Sy): —80—X+——(80—y); (A-1)
Ox x X

or? 0 ot @ ox
0 dy
JE— 8 _- — — _— = (): -
c 7 y 8g — 6o o for x=0; (A-2)
0
8y=58y=0 for t=0; (A-3)
0
—déy=0 for x=X; (A-4)
0x
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and

0y =rdy+ydr (A-5)

All unperturbed functions remain at reference values.
The gradient of objective function (6) can be calculated in-
dependently:

T /3%y 3y o d’c
v, J, = + 2 g 222, (a6
o J; <5t2q > o g WO

0x Ox
vV,J=4q| +C,%g; (A-7)
x=0
and
—1 (7 , r—1
Vr‘]l =C_3 Oy(d—y)dt+ Crz . (A-S)

g(x, t) is determined by the following system of equations:
2

0*q 0 dq 1 p
e e O

jot}

(A-10)

and

—=0 forr x=0 and x=X. (A-11)

The system of equations (A-6) through (A-11) is the adjoint of
the linearized system. [Vector norms are implicitly defined by
function (6).]

Using conventional gradient methods (steepest descent,
Fletcher-Reeves, etc.) and gradients (A-6), (A-7), and (A-8), we
can iteratively locate minima of objective functions (6) and (9)
(see Luenberger, 1984). At any given iteration we have esti-
mates of the impedance, the source, the trace amplification,
and their corresponding wave field. Subtraction of this wave
field from the data gives an error which the adjoint system
uses to calculate new gradients. For the nonquadratic objec-
tive function (6), perturbations must be scaled by a line search
before they are added to the reference parameters.

Minimization of the quadratic objective function (9) ad-
ditionally requires the linearized differential system of equa-
tions (A-1) through (A-5). A steepest-descent or conjugate-
gradient minimization requires only a few scalar products for
calculation of the perturbations’ scale factor.

APPENDIX B
ESTIMATING PROBABILITY DENSITY FUNCTIONS WITH CROSS ENTROPY

To estimate the probability density function for transformed
signal, one must use the estimated functions for data and
noise. The three are related by the convolution of equation
(11). The necessary deconvolution can be posed as an opti-
mization: which of a limited class of probability functions
maximizes the probability of a histogram taken from the same
random variable?

Let {p;} be a histogram, and let {p,} be the discrete prob-
ability density function approximating it. The subscript in-
dexes a narrow range of amplitudes (a bin). p, is the frequency
of the bin in the data, and p, is its assumed probability. If the
parameters sampled by a histogram are statistically indepen-
dent, then the probability of the ensemble is equal to the
product of the probabilities of the individual samples. A histo-
gram of N samples will have the probability within brackets:

max [H Ci(ﬁ.-)"“"],

{pi} i
where (B-1)
(2. N)!
Fip, N — )Y
Exclamation points indicate factorials. The optimum prob-

ability function will maximize function (B-1). Taking the natu-
ral logarithm, adding a constant, and reversing a sign allows

us equivalently to minimize

min }’ p; log (p;/p)). (B-2)
thiy i

We discover, in the continuous limit, Kullback’s (1959) direc-
ted divergence or cross-entropy:

min fp(x) log [p(x)/ﬁ(x):l dx. (B-3)
px)
x is now the index of amplitude.

Assuming that the estimated probability function for noise
is correct, I define a maximum a posteriori estimate of the
signal probability function as one that maximizes the prob-
ability of the data histogram. Equivalently, one can minimize
the following functional of the signal probability function:

Ja [ps(x)] = J pa(x) In |:pd (x) / J p.(x — 9P, () dy] dx. (B-4)

In addition, the probability function must be positive and
have unit area. Many nonlinear methods will minimize this
functional, but the method of steepest descent is easiest to
explain. The histograms contain fewer than a hundred sam-
ples, so the iterations are fast.

To calculate the gradient of functional (B-4) with respect to
each point of the signal probability function, perturb the pre-
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vious estimate with an infinitesimal delta function and differ-
entiate with respect to the delta function’s amplitude:

G(xy) = % J, ,:ps(x) + £8(x — xo)]

e=0

Pa(x)

p,(x — x% dx. (B-5)
PP, (x — y) dy

=_fj

This gradient divides the data histogram by the convolved
function and crosscorrelates with a shifted noise function. The
crosscorrelation indicates changes in the signal function that

would compensate for a nonuniform divergence between the
two data functions. This gradient is negative everywhere. A
steepest-descent perturbation of the signal function can be
written as

(I —ap,(x) + aG(x)/f G(x'y dx'. (B-6)

The optimum value of the scalar a can be found by searching
the interval [0, 1] with a golden-section line search (Luenber-
ger, 1984). The gradient can then be recalculated for the up-
dated signal function.



