Flexible seismic traveltime tomography
applied to diving waves
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ABSTRACT

To prepare for 3D anisotropic applications of traveltime tomography I found it
necessary to reformulate the estimation of raypaths and the parameterization of
velocities. Raypaths should be efficient to calculate and store in memory without
recalculation. Velocities should be able to change with angle when necessary.

Ray relaxation can optimize ray paths through an anisotropic medium de-
scribed only by group velocities. Three parameters adequately describe trans-
versely isotropic group velocities with a vertical axis of symmetry. One parameter
changes most arbitrarily, one changes only along the vertical axis of symmetry,
and one remains a constant.

3D raypaths are described as sums of smooth curves with a small number
of coefficients. A generic Gauss-Newton algorithm perturbs these coefficients to
minimize traveltimes between endpoints. A small number of coefficients are saved
in memory to describe paths efficiently.

Diving wave tomography can use conventional traveltime tomographic algo-
rithms to model and invert the traveltimes of direct arrivals. Early synthetic
tests minimized the complexity of velocity anomalies necessary to explain the
data. Raypaths robustly converge to their appropriate distribution.

INTRODUCTION

In the past few years, | have found my previous methods of traveltime tomogra-
phy too restrictive for many important current applications. Most importantly, the
parameterization of velocities did not allow the introduction of anisotropy, and the
methods of constructing paths and traveltimes were impractical for large sets of three

dimensional picks. See Harlan et al (1991a; 1991b; 1990; 1992).
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Crosswell data frequently appear impossible to explain without anisotropy, and
depth imaging often finds it impossible to explain both moveouts and well-ties with a
single isotropic velocity. In this paper, I propose an algorithm using group velocities
that can change with angle. The computational difficulty is only slightly greater, and
the flexibility will be available when necessary.

Previously, I found explicit methods of extrapolating traveltime tables convenient,
but such tables take too much memory to be stored for a large 3D dataset. Recom-
putation of traveltime tables is likely to be prohibitively expensive. Even sampled
raypaths also can require too much memory to be stored. Instead I optimize the
coefficients of smooth basis functions according to Fermat’s principle, to minimize
the ray traveltime. Only a few coefficients need be stored to describe each raypath.

The first obvious applications of this method are to crosswell data and to surface
diving-wave tomography for near surface velocities. In later work, reflection points
will be included. Because less work has been done on large 3D datasets for diving
wave tomography and because there is less understanding of the non-uniqueness, |
address diving waves first. Diving waves are generalizations of surface refractions.
Conventional refraction analysis describes the near surface as layers of slabs, whose
velocities change very smoothly, if at all, in the interior, and very sharply at the
boundaries between slabs. The first arrival times are assumed to increase linearly with
offset for a given refraction. An interpreter must distinguish individual refractions on
the first arrival. Unfortunately, first arrivals rarely appear to be composed of a series
of distinct linear segments.

Diving waves allow the interpreter to model all direct arrivals, without identifying
individual refractions. Velocities are allowed to vary arbitrarily but are expected to
increase overall with depth. When sources and receivers on the surface are relatively
close (hundreds of meters), the wave energy that arrives first is confined to the very
near surface. When the separation reaches several kilometers, then the earliest arrivals
contain energy that has passed a kilometer or so in depth. For example, if the velocity
at the surface of the earth were 2 km /s, and this velocity increased 1 km/s with every
1 km of depth (reaching 4 km/s at 2 km depth), then a source and receiver at an offset
of 4.47 km would produce a circular arc that reached a maximum depth of 1 km. An
offset of 6.93 km would reach 2 km depth.

Recent papers have used tomographic methods to reconstruct near surface ve-
locities from surface measurements of first arrival times. Simmons, Bernitsas, and
Backus (1988; 1992; 1994) were able to reconstruct impressive images with simple
assumptions of semicircular raypaths. Zhu, Sixta, and Angstman (1992a; 1992b) al-
lowed more flexible raypaths for improved 2D images. Stefani (1993) prepared an
excellent 2D case study which demonstrated the accuracy of estimated velocities for
depth conversion. Bell, Lara, and Gray (1994) showed that targeted tomography
was appropriate in certain areas. Zhang and McMechan (1994) and Qin, Cai, and
Schuster, (Qin et al., 1993; Cai and Qin, 1994) solved very general isotropic 3D
geometries. J.A. Hole et al (1992; 1992) used explicit traveltime extrapolations for
good inversions of 3D diving traveltimes with limited surface coverage. Many other
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papers consider diving waves without tomography (Laski, 1978; Levin, 1994). The
literature on the inversion of refracted waves also contains many good ideas which
could be generalized for diving waves (Clayton and McMechan, 1981; Landa et al.,
1994; Zanzi and Carlini, 1991; Palmer, 1981; Hagedoorn, 1964; Hawkins, 1961).

Diving wave tomography has only recently incorporated anisotropy, which ap-
pears more in crosswell tomographic applications (Michelena, 1994; Michelena et al.,
1993; Vassiliou et al., 1994; Saito, 1991; Pratt and McGaughey, 1991). 1 will follow
many of the suggestions of Grechka and McMechan (1995a; 1995b) for diving wave
tomography. They use Chebyshev polynomials to describe raypaths and have already
performed SVD analysis to show the non-uniqueness introduced by anisotropy into
diving-wave tomography.

In this paper, a continuous anisotropic velocity model is parameterized with a
minimal number of discrete parameters. Most of the cited publications prefer to work
with discrete bins and may even discretize the physical modeling. Instead, I assume
a continuous velocity model with a finite number of coefficients to scale continuous
basis functions.

Most cited diving wave papers construct sampled rays from shooting methods or
from traveltime tables. Shooting methods can be fast, but are efficient only if one
sorts through the data in a particular order. Rays must be stored in their sampled
form, which may take too much memory for 3D datasets. Traveltime tables cannot
be saved even for smallish datasets. This paper constructs rays as a scaled sum of
smooth basis functions. Only a small number of coefficients need to be stored to
describe an entire continuous raypath. A generic Gauss-Newton algorithm optimizes
raypaths and velocities without any features specific to this application.

ANISOTROPIC VELOCITY PARAMETERS

In this section I will propose a simple parameterization of angle-dependent ve-
locity appropriate for relatively weak anisotropy with a vertical axis of symmetry.
Anisotropy will be assumed to derive from layered media that may be isotropic on
a fine scale but which will appear to be anisotropic on the scale of larger seismic
wavelengths. The anisotropic parameters will be described as a sum of smooth basis
functions, with no more spatial variations than necessary to explain the data. The
form will allow easy linearization of slowness with respect to the model coefficients.

The parameterization of velocities should have enough degrees of freedom to de-
scribe all plausible models; the particular numerical formulation of this parameteri-
zation is less important. Our methods should be able to request the velocity at any
point and in any direction from an essentially continuous model.

The model should also be differentiable, to allow the efficient optimization of
raypaths. If discontinuities are included in the model, then it should be possible
to smooth these values numerically to calculate gradients on different scales. 1 will
also require that the resolution of the model should be adjustable at any time, even
during optimization of the model. Adjustable resolution will allow the optimization
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to converge first on the smoothest, most reliable components of the velocity model.
As the accuracy of estimated raypaths improves, then more detail will be allowed in
velocity models.

No convenient explicit equation exists to describe group velocity as a function
of angle. Instead, I will use an approximation with enough degrees of freedom to
explain the data well and still adequately span the same range of functions allowed
by the exact theory. Tomography will have a limited ability to estimate arbitrary
changes in velocity with angle. An approximate equation will have a form that is
easy to optimize and yet describe the most important variations in velocity with
angle. The errors introduced by analytic approximation are intended to be much
smaller than errors introduced by inaccurate traveltimes. We might fit data first with
more approximate curves and introduce refinements only when sensitivity improves.

The following equation parameterizes group velocities as a function of group angle
¢, measured from the vertical axis of symmetry:

V()™ =V /1 + 25 cos() sin?(¢) + 2¢ cos?(9)
~ VU1 + g cos?(g) sin(9) + € cos?(¢)]. (1)

See the appendix for a fuller justification. This equation will have several advantages
for tomography. The equation describes reciprocal velocity, or slowness, as an easily
linearized function of three variables V.7, n, e. The parameters of anisotropy n and e
have small magnitudes, on the order of 0.05. The parameter € controls an elliptical
stretch, and 7 controls the bulge of anellipticity.

Slowness is integrated as a function of distance to give traveltimes. The horizontal
velocity V.. i1s well defined by a physical experiment and is measured accurately from
surface or crosswell experiments; the velocity V, along the vertical axis of symmetry
is much less well determined. The first parameter 1 in the square root is determined
second best by surface experiments (Tsvankin and Thomsen, 1994; Alkhalifah and
Tsvankin, 1994) because it specifies the difference between a normal moveout (NMO)
velocity and V. according to equation (A-3). Finally, the parameter ¢ expresses the
third and least well determined part of anisotropy, giving the fractional change of
vertical velocity according to (A-1).

The magnitude V. will be allowed to change most arbitrarily, in many dimensions.
Because this anisotropy is assumed to be a layered phenomenon,  will only be allowed
to change vertically (or perpendicular to layering). Because ¢ is so poorly determined
by surface data, I will assume that it has a single global value which can be chosen
to fit well ties when available. Or one may attempt to predict € from the other two
parameters by observing the correlation in values that are produced by equivalent
media calculations from well logs (Backus, 1962).

We can express the continuous velocity functions as a scaled sum of smooth basis
functions. For example, if x is an arbitrary Cartesian coordinate, then we can express
the slowness V,7!(x) as a linear function of discrete parameters s = [s;], using smooth
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basis functions S;(x):

= siSi(x) =5 S(x). (2)

If Z is the unit vector in the direction of the vertical axis of symmetry, then we can
express the function n(x) as a linear function of scale factors 9 = [n;] and smooth
one-dimensional basis functions F;(z):

2772 2 2 = E()f

N>

)- (3)

The third parameter € is already a single constant.

Let us designate this discrete set of velocity parameters as a single vector v =
[s,m,¢]. The different elements of v are understood to have different scales, and
will assume different variances during optimization. The approximate magnitude of
V; in (2), and thereby of s, is easily anticipated from a quick glance at traveltimes
over certain short distances. Theory (Backus, 1962) can easily anticipate reasonable
magnitudes for n and € for equivalent layered media.

Now we can write the continuous group velocity explicitly as a function of these
discrete parameters

V(x,¢)™ =[5 - SEI + 1 E(x-2)cos’(¢)sin’(¢) + e cos’(¢)]. (4)

=

A finite perturbation is easily linearized as

AlV(x,6)7' 1= [As-S(¥)][1+n E(x-2) cos’(¢)sin’(¢) + ecos’(9)]
+ [s- S + An - B(x - 2) cos’(¢) sin’(¢) + Accos?(¢)].  (5)

Unperturbed parameters in this equation are understood to remain at their reference
values. Reference velocities will be iteratively updated and relinearized by a Gauss-
Newton optimization algorithm described later.

PARAMETERIZATION OF PATHS

Raypaths will be parameterized as a sum of a small number of Chebyshev poly-
nomials. Fermat’s principle allows us to optimize these raypaths with only group
velocities, and not phase velocities. The coefficients of the raypaths can be saved in
little computer memory.

In an anisotropic medium, traveltime tomography needs to construct raypaths
from group velocities. A raypath traces the path of wave energy and by definition
always parallels the energy-flow vector, or Poynting vector. (See standard texts on
electromagnetic theory.) Let us identify the Poynting vector with the group velocity
vector, whose more restrictive definition applies only to a narrow band of frequencies.
When the high-frequency ray approximation is valid, we can calculate the traveltime
of a wave between two points by integrating the group velocity along the ray between
the points.
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Most shooting methods of dynamic ray tracing require alternate use of both phase
and group velocities. Using both velocities would be more inconvenient for travel-
time tomography, which needs only group velocities to calculate traveltime from a
valid raypath. A perturbation of group velocities would have to be reconciled with
perturbations of phase velocities.

By contrast a relaxation method of ray tracing needs only the group velocity. A
raypath designates a stationary path according to Fermat’s principle: perturbing any
portion of the path should increase the integrated traveltime. A relaxation method
initializes the raypath with parameters that allow few degrees of freedom. The initial
path should be stiff and unable to make any sudden changes in direction because
early iterations will also have large errors in the reference velocity model. Some
stiffness in a raypath is also necessary to model accurately the path of wave energy
at finite frequencies. Parameters of the path are perturbed and adjusted until the
integrated traveltimeis minimized. Because errors in the path are reduced, the path is
allowed more degrees of freedom, and the new parameters are perturbed and adjusted
further. Optimization ends when no more detail in the raypath can be justified for a
measurable sensitivity to the resulting perturbations of traveltime.

Describe a ray then as a sum of smooth basis functions. Prothero et al (1988)
described raypaths as sums of sine functions and optimized these functions with a sim-
plex search, which avoids the need to calculate Frechet derivatives. Berryman (1990)
used a similar raypath optimization for crosswell applications. However, Frechet
derivatives do allow faster convergence.

More recently Grechka and McMechan (1995a; 1995b) have used Chebyshev poly-
nomials. | find that these polynomials optimize shorter traveltimes for diving waves
from fixed surface points than do sums of sines and semicircles. Sines have much
flatter derivatives at the endpoints and cannot begin at such a steep angle as the
polynomials. A semicircle appears to encourage too steep an angle at the endpoints.

Chebyshev polynomials 7,,(z) are defined over the range —1 < 2 < 1 by the
recursion: To(z) = 1, Ti(z) = x, and Th42(x) = 22T,41(z) — T(x). As a minor
modification, I prefer to shift the Chebyshev polynomials so that endpoints are fixed,
and coefficients describe perturbations away from a straight line between endpoints.
Define functions C),(z) over the range 0 < 2 < 1 by

Con(z) = [1 = Tong2(22 —1)]/2,and
Cont1(z) = [22 —1— Toys(22 — 1)]/2, (6)

so that Cy(z) = —42% 4+ 4z and Ci(z) = —162° + 2422 — 8z, etc. Figure 1 shows the
first 5 of these shifted Chebyshev polynomials.
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Shifted Chebyshev polynomials

Figure 1: Shifted Chebyshev polynomials are used as basis functions for three-
dimensional raypaths. [NR]

Let a and b be the Cartesian coordinates of the endpoints of the ray. I assume
that these points lie along a surface that is roughly horizontal. Let Z be the unit
vector pointing down the vertical axis of anisotropic symmetry. I specify the location
x(r) along a raypath as a function of the variable r, which ranges from 0 to 1 between
the endpoints:

n

L @l + S ACNEx b-al (]

=0

x(r)=a+r(b—

W

The parameters [a;, (3;] scale a limited number of smooth curves that perturb the
ray from a straight line between the endpoints. The [a;] scale increasing orders of
periods of polynomials in the vertical direction, and the [3;] scale in a perpendicular
horizontal direction. The parameter r should be sampled more densely near the
endpoints. I prefer the sampling r, = [1 — cos(xk/N)]/2 for k = 0 to N, which gives
even sampling in distance along a semicircular path, to guarantee adequate sampling
near possibly steep endpoints. This sampling also matches the density of zeros of the
Chebyshev polynomials, which should be sampled more densely where they become
more oscillatory.

A small number of coefficients may be adequate to describe a 3D raypath. Such
a raypath is much easier to store in memory than an ordered series of samples from
the raypath. The stiffness of the raypath may also be controlled to describe more
accurately the path of energy with finite bandwidth. Detailed complications of a
raypath should be avoided on a scale finer than the spatial wavelengths being modeled.

VELOCITY PERTURBATIONS

Here I show that traveltime data are easily linearized as a function of the param-
eters describing the velocity basis functions.
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The functional form of an anisotropic group velocity must depend on the location
and on the direction of a raypath. The vector dx(r)/dr points tangent to a given point
on a raypath. Since ¢ is the angle of a raypath from the vertical axis of symmetry
z, we can calculate the angle in the group velocity (4) as a function of the position
along the raypath:

¢(r) = arccos{[0x(r)/0r - 2]/||0%(r)/Or||.} with |7 = x - x. (8)

For this reason, we can write the parameterized group velocity V[x(r), ] in (4) as a
function of the location and a tangent vector (with arbitrary magnitude).

A given raypath x(r), for r from 0 to 1, integrates for the traveltime

t= /01 VIx(r), 6(r)] " |0x(r) /O ||dr. (9)

Because the raypath represents a stationary minimum, tomography recognizes that
perturbation of a valid raypath affects traveltime only to second order. To perturb
traveltimes linearly with finite perturbations of slowness along a path, we need only
integrate the slowness perturbations along the original path:

At = [ AVIx(r), ()] V| 0x(r) [0 (10)

The perturbation of slowness is given by the parameterization in (5). This formu-
lation provides the linearized perturbation of the traveltime data as a function of
perturbed velocity parameters. The adjoint uses the same weights for a backprojec-
tion of traveltime perturbations upon the velocity parameters.

OPTIMIZATION

For this application, I found it advantageous to write a generic “Gauss-Newton”
optimization routine that minimizes a least-squares objective function with a non-
linear forward model. Both ray tracing and tomographic inversion of velocities are
optimized with this algorithm. The ray parameters in equation (7) are perturbed
until the traveltime is minimized. (The traveltime is a nonlinear function of local
velocities.) The error between picked and modeled traveltimes (9) is minimized by
perturbations of velocity parameters (4). In each case, a model damping term is
included for numerical stability.

Let the vector m describe a model, and a vector d contain the data whose
errors will be minimized. Define also a scalar product for each of these vectors:
< m;,m, >,, and < d;,d, >4. The squared magnitude of each is defined by

Imf2 =< m,m >, and [d]}=<d,d > (11)

These scalar products incorporate any non-stationary variances or covariances that
can be assumed for the problem. For example, [ will be assuming smaller variances for
higher-order polynomials used to describe raypaths. The velocity parameters n and €
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will have small variances on the order of 0.05, and the velocity V. will depend on the
physical units of the survey. Rather than introduce correlations between samples into
the scalar product, I prefer to encourage such correlations with the choice of basis
functions. By scaling basis functions correctly, we can make the model norms become
the trivial Cartesian norm, simply summing the squares of model parameters. 1 do
not assume any correlation in the errors of traveltime data.

Assume we wish to fit the data d with a non-linear forward model £f(m). We also
must apply a linearized forward transform F(m,) for a given reference model m,, so
that )

f(m, + Am) =~ £(m,) + E(mo) -Am. (12)

We must be able to apply the transforms f(m,) and F(m,) when necessary and apply
the adjoint F*(m,) of the linear transform, defined by

<d,E(my) - Am >,=<F"(my) - d, Am >, . (13)

Let us assume that all optimum models m can then be specified to minimize an
objective function of the form

minJi(m) = [|d — £(m) |7 + lm — m]7.. (14)
where m contains the expected mean of the model. The relative weighting of the
two terms ideally should be equal when covariances are included properly in the dot
products. To optimize a raypath I minimize the traveltime. To optimize velocities |
minimize the differences between measured and modeled traveltimes.

The objective function is iteratively approximated by a quadratic objective func-
tion, using the linearized forward model
min Jo(Am) = ||d — £(mo) — E(myo) - Am [z + [mo + Am — ;. (15)

This quadratic objective function is easily optimized by a gradient method such as
conjugate gradients. The gradient

Vam/2(Am) = _E*(mo) [d = 1£(my) - E(mo) ‘Am] + (my + Am —m)  (16)

requires application of the adjoint linearized transform. The resulting linearized per-
turbation is added to the reference model, after optimizing a scale factor A by a line
search:

min J3(A) = ||d — £(m, + AAm)[[; + [m, + AAm — mlf;,. (17)
The reference model is updated by the scaled perturbation, the transform is relin-
earized, and the new quadratic (15) is optimized again, until convergence.
SYNTHETIC EXAMPLE

Scheduled tests begin with a simple 2D isotropic example, to test the convergence
of the ray and velocity optimization. Non-uniqueness here will most likely remain
with the additional complications of 3D and anisotropic models.
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I define a 2D velocity model (in km/s) over the ranges 0 < z < 10 (km) and
0 <z <2 (km), with

v(r,2)=2+2—-06 exp {—7[(z—3)*+ (z—1)%}
+ exp {=[(z—T7)"+ (= = 1)*]}. (18)
This velocity model (Figure 2) has a background that increases linearly from 2 km/s
to 4 km/s from z = 0 km to 2 = 2 km. Two smooth velocity anomalies, Gaussian with

a width of 1, one slow and one fast, are placed at depths of z =1 km, at x = 3 km
and x = 7 km.

Distance (km)
0 1 2 3 4 5 6 7 8 9 10

HLWOOTILINI—
WWOIY OO
[S)[USENENENIINUVIV[O)]

Depth (km)
B CLLINIINSTIN0

2

Velocity (km/s)

Velocity model
Figure 2: This is the assumed velocity model. [NR]

Sources and receivers are placed at 0.5 km intervals of  within 0 < z < 10, with
a minimum separation (offset) of 0.5 km and a maximum of 7 km, for a total of 189
data pairs. Figure 3 shows the resulting coverage of the velocity model by raypaths.
If not for the velocity anomalies, a maximum offset of 7 km would produce a ray
reaching 2 km depth. Rays through the faster part of the model cross at shallower
depths. Rays also attempt to pass around the slow anomaly, leaving a small hole in
coverage.

Distance (km)
0 1 2 3 4 5 6 7 8 9 10

B LILOLIINDINDION
OYLWOCOOHXOILINI—
WWROItY OO
[©IGVENENENIRNUNIVIV)]

Velocity (km/s)

Modeled rays

Figure 3: Rays are modeled from sources and receivers placed every 0.5 km, with a

maximum offset of 7 km. [NR]

The most robust initialization of this velocity model would first optimize a velocity
that changed only with depth. Only two parameters are necessary to describe a
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Distance (km)
0 1 2 3 4 5 6 7 8 9 10

LOLILINIDIRDIDNDY
HLIOOYUIWINI—
WWRUIYy WO
W~~~ WO

Velocity (km/s)

Initial model

Figure 4: An initial model assumes velocity increases linearly from 2 km/s at the

surface to 4 km/s at 2 km depth. [NR]

velocity that changes linearly with depth, so I initialize with the model in Figure 4:
the velocity increases from 2 km/s at the surface to 4 km/s at 2 km depth. The rays
are laterally invariant for a given offset. The ray coverage does not agree with that
of the original model in Figure 2.

Eight large iterations were performed. In the first iteration isotropic velocities were
described with overlapping Gaussian basis functions with a width of 1 km vertically
and 4 km horizontally. During each large iteration, the raypaths were estimated
once, then a linearized perturbation of velocities was estimated for these reference
raypaths with a conjugate gradient algorithm. The perturbation was added to the
reference velocities only after a line-search to find the proper scale factor. Rays were
then reéstimated for the next large iteration and velocity perturbations were allowed
to change more rapidly, with geometrically decreasing widths, until the final two
iterations, where basis functions have widths of 0.1 km.

To control the rate of convergence for a general dataset, I always begin with
velocity function that is smooth over most of the vertical and horizontal span. The
final maximum resolution is limited by the density of rays and the spatial wavelengths.
The widths of intermediate basis functions are reduced by a constant factor for each
iteration. The final two iterations are at maximum resolution. Users are allowed to
increase the total number of iterations for a more robust convergence.

After four iterations, the very smooth velocity model in Figure 5 has begun to
show the velocity anomalies in outline. After two more iterations, the shape of the
estimated anomalies in Figure 6 has approached the scale of the true anomalies, but
still with flattened magnitudes. After eight large iterations, the velocity model in
Figure 7 shows minor unreliable detail on the scale of the sampling of raypaths, but
the anomalies do not much better resemble the original model. The raypaths in Figure
7 have converged to roughly the same coverage as in the original model in Figure 3.

The traveltimes plotted in Figure 9 were integrated from the raypaths in the
original model in Figure 3. Traveltimes from the estimated raypaths in Figure 8
were subtracted from the correct traveltimes for the errors in Figure 10. These errors
ranged from —6 ms to +10 ms, with a root-mean-square average of 2.3 ms. Those
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Distance (km)
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Estimated velocities after four iterations -
Figure 5: After four iterations, very smooth variations in interval velocity have been
optimized. [NR]
Distance (km) s
0 1 2 3 4 5 6 7 8 9 10 ©n
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Estimated velocities after six iterations -
Figure 6: After six iterations, velocities are allowed to change more rapidly. fig6
[NR]
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0 1 2 3 4 5 6 7 8 9 10 n
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° 4
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Final estimated velocity model

Figure 7: After eight iterations, velocities are allowed to change most arbitrarily.
5] INR
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Distance (km)
0 1 2 3 4 5 6 7 8 9 10

LOLILINIDIRDIDNDY
HLIOOYUIWINI—

Velocity (km/s)

Final estimated model

Figure 8: The final estimation of raypaths for the model in Figure 7 has converged
to a coverage similar to that in Figure 3. [NR]

errors which remain do not appear to have any systematic correlation. Such time
errors are much less than would be found at these scales in times picked from recorded
surface seismic data, where a seismic temporal wavelength often exceeds 20 ms. Thus,
the original and estimated velocity models in Figures 2 and 7 produce effectively
indistinguishable traveltimes for this survey.

Midpoint (km)
4 8

5 7 8 9 10

0 1 2 3

0.245
0.3673

0.4895
0.6118
0.734
0.8583
0.9785
1.101
1,223

1.345
1.468
1.59

1.712
1.834
1.967
2.079
2.201
2.323
2.446
2.568
2.69

4
Time (s)

Offset (km)
3

2

1

Modeled times

Figure 9: These traveltimes were modeled from the source and receiver positions in

Figure 3. [NR]

Figure 11 shows the difference of the original velocities in Figure 2 minus the
estimated velocities in Figure 7. The magnitudes of both anomalies has been un-
derestimated. Moreover, sidelobes appear about the anomalies. The center of the
estimated slow anomaly is too fast and the edges of the slow anomaly are too slow.
The center of the estimated fast anomaly is too slow and the edges of the fast anomaly
are too fast. Both anomalies have lost resolution in the reconstruction. The deeper
portion of the fast anomaly was missed altogether because the original rays did not
reach this depth.

The most important application of diving wave tomography is the correction of
structural distortions in underlying reflections. To see the effect of errors in the
velocity model, I calculate the vertical two-way traveltime from the surface to a
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Midpoint (km)
8 v

Errors in fitting picks

Time (s)

Flexible tomography

—0.00604
—0.006233
—0.0044286
—0.003819
—0.002812
—0.002005
-0.001198
—0.000391
0.000416
0.001223
0.00203
0.002837
0.003644
0.004451
0.005258
0.006065
0.006872
0.007679
0.008486
0.009293
0.0101

Figure 10: Traveltimes from the original model in Figure 2 minus traveltimes from
the estimated model in Figures 7 and 8. The root-mean-square average of these errors

[NE]

was 2.3 ms, well below any possible accuracy in picking.

True minus estimated velocities
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Figure 11: The original velocities in Figure 2 minus the estimated velocities in figure

7.
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horizontal reflector at 2 ki depth, for all surface positions. The true velocity model
gives two distinct peaks in traveltime in Figure 12, but the estimated velocity model
gives much smoother peaks. The positioning of peaks is correct, but lost resolution
has the effect of reducing the magnitude of the relative changes in vertical time.

Smearing of the velocity anomalies clearly occurs parallel to the raypaths. Reso-
lution is greatest perpendicular to the raypaths. The angular coverage of a particular
anomaly is limited. Broader velocities anomalies are easier to invert than this exam-
ple, but we must acknowledge this loss of resolution will affect the accuracy of our
near-surface velocities. Other information, such as known shallow faults, might allow
us to identify and introduce sharper edges on lateral velocity changes.

Distance (km)
0 1 2 3 4 5 6

Reflection time at 2 km depth

Figure 12: Vertical two-way times integrated from the surface down to a flat reflector
at 2 km depth, for the original model in Figure 2 and for the estimated model in
Figure 7. The estimated curve has broader and shallower peaks (time sags) than the

actual curve. [NR]

FUTURE WORK

The description of anisotropy velocities and raypaths as sums of smooth basis was
relatively simple to code, and a generic Gauss-Newton optimization algorithm greatly
simplified their optimization. The non-uniqueness of the first synthetic inversion is
not surprising and will not prevent us from making use of well-determined components
of velocities.

The 2D isotropic synthetic converges to the smoothest and most stratified velocity
model that will adequately model the picked traveltimes. 3D and anisotropic mod-
els could easily increase the non-uniqueness of the inversion. Next, I must test 3D
isotropic models to discover what patterns of 3D coverage can isolate velocity anoma-
lies. It would be very useful to know if a typical 3D marine acquisition is adequate,
with offsets extending only along one azimuth.

I must test 2D and 3D anisotropic data for non-uniqueness. An isotropic in-
version of anisotropically calculated times will demonstrate whether such data can
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be explained isotropically. With crosswell surveys many have seen that a simple
anisotropic model explains the same traveltimes as an isotropic model with much
more complicated spatial variations in velocity. Possibly an analogous situation will
occur with surface diving waves. I must then make choices on whether to discour-
age spatial variations or anisotropy more, while allowing for non-uniqueness in both
components.
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APPENDIX A

PARAMETERIZATION OF ANISOTROPIC GROUP VELOCITIES

Assume that anisotropic velocities have a vertical axis of symmetry, like the
transversely isotropic (T1) media described in Thomsen (1986). Although that pa-
per describes “weak” anisotropy, the same equations can be applied to very strong
anisotropy (Tsvankin and Thomsen, 1994).

Three of Thomsen’s parameters, V., 6, and ¢, are defined by the elastic constants of

a general T1 medium. These constants can be used to specify three different effective

velocities at a single point in the model. V, is the velocity of a wave traveling vertically

along the axis of symmetry. The velocity in any horizontal direction is V, determined
by

= VAV V2 50 (A-1)

and a “normal moveout velocity” (NMO) velocity V,, defined by
§=VA(VP-V3/2<0. (A—-2)

Phil Anno of Conoco has shown that if the TI properties represent the equivalent
medium of many isotropic layers (Backus, 1962; Schoenberg and Muir, 1989), then
the above inequalities can be expected to hold. (One additional assumption is that
the V;/V, ratio and V; have a positive correlation.) Notice that V, ~ (1 4 €)V, and
Vo x (14 6)V, , sothat V,, <V, < V.

For convenience, researchers at the Colorado School of Mines (Tsvankin and

Thomsen, 1994; Alkhalifah and Tsvankin, 1994) have also defined a constant
1= (e 8)/(1+26) = VAV —V2) /2 > 0, (A—3)

Many combinations of three of these parameters can be used to describe a TI medium.
An approximation has already dropped a fourth constant to which compressional P
waves are very insensitive. The exact equations for TI phase velocity as a function
of angle are rather clumsy, and no explicit form is available for group velocity. Alter-
native approximate equations can used which fit almost the same family of curves as
the original correct equations (Michelena et al., 1993). I use an approximate equa-
tion for group velocity which appears to emulate closely the exact curves for large
ranges of positive € and negative 6. Since I aim to estimate these anisotropic velocities
from noisy measurements, | expect our estimated curves to have larger errors than
introduced by these approximations.

I choose approximate curves with the three velocities defined above. Let ¢ be the
group angle of a raypath from the vertical. Then the group velocity V(¢) can be
expressed as

V()% = V. % cos™(9) + (V* = V) cos™(¢) sin®(¢) + VP sin’(g). (A —4)
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Greg Lazear of Conoco found that a good approximation of the phase velocity v(8) as
a function of the phase angle 8 takes a similar form, but with reciprocals of velocities:

v(9)2 = VZ2 cos2(0) + (Vn2 — VIQ) cosQ(Q) sin2(9) + VI2 sinQ(G). (A =D5)

The NMO velocity also turns out to have a physical interpretation. Imagine an
experiment on a homogeneous and anisotropic medium (or imagine a small scale
experiment on a smooth model). Measure the traveltime ¢y between two points placed
on a vertical line, separated by a vertical distance V,{3. Now displace the upper point
a distance h along a horizontal line and measure the new traveltime .

Then according to equation (A-4) the traveltime ¢; as a function of offset h is
exactly
2 2 2 2 2 h? 2
he=to+ |V + (V7 = Vo) oy | B
When h < V.13 then the value of {5 in this “moveout equation” is controlled by the
NMO velocity V,, rather than V.. In the other case h >> V,{¢, the raypath is almost
horizontal and V. dominates.

(A — 6)

I find it convenient to define a stacking velocity Vi (h) as a function of the offset
h for a fixed vertical distance:

h2
Vi(h)™* = (1 — 1g)/h* =V, + (V2 =V,

., A —
T n )h2+‘/z2t3 ( 7)

Thus, we can construct a equation which describes the best fitting hyperbola to
traveltimes at zero offset and at a single finite offset h:

=1+ B*/Vi(R)*. (A —38)

Note that this stacking velocity covers the range V,, < V,(h) < V,, increasing in value
as h increases. (To use two-way reflection times in A-8 we need only replace the half

offset h by the full offset.)

Theoretically, three measurements of traveltimes at three different offsets - should
uniquely determine the three velocity constants V., V.. V,,. However, the traveltimes
are much more sensitive to V,,, which determines moveouts at small offsets, and to V.,
which determines moveout at larger offsets. The vertical velocity V, affects only the
rate at which the stacking velocity changes from one limit to the other. As long as
V., has roughly the correct magnitude, then we can fit all measured traveltimes very
well. Remember that we expect V,, <V, <V, for equivalent layered media.

For imaging data in time, we can set V, = V,, and simplify our equations even
further. To image surface data in depth, we can focus images very well with good
values for V,, and V,,, then adjust imaged depths to tie wells with V., holding the
other two velocities constant.

Stacking velocity analysis can be optimized with V,, because it is relatively close
to V. If the maximum offset equals the depth, and if V, = 1.1V,,, then V}, = 1.02V/,
for a flat reflection, which is small enough difference for such a large anisotropy.
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This anisotropy model, although certainly not the most general, describes the most
important properties of transversely isotropic velocities. The very simple form allows
for easy optimization and inversion. A tomographic algorithm which builds on such a
model will include the necessary dependence of velocities on angle. Any refinements

in the anisotropic behavior will be easy to introduce without major alterations of the
computer program.



