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SUMMARY 
A cross-well, shear-wave data set posed two problems: 1) wells 

are separated by only 12.5 wavelengths, so thin raypaths are a 
poor approximation; 2) data are recorded through a high-velocity 
limestone surrounded by low-velocity shales. Waves are bent 
considerably, so either refracted or direct arrivals can arrive first. 
Only first-arrivals can be picked with any reliability. 

Ray tracing is avoided entirely by extrapolating traveltimes 
explicitly from sources or receivers to every point in a region of 
interest. Rather than search for a single fastest raypath, this 
method finds Fresnel regions containing all paths that add con- 
structively to first-arrivals. This method also robustly finds 
minimum traveltimes, whether direct or refracted. 

The resolution of the estimated velocity model is controlled 
explicitly with basis functions of adjustablewidth. Wavepaths and 
velocities are estimated alternately: as the accuracy of paths 
improves, velocities are allowed to introduce sharper detail. No 
more two-dimensional detail is introduced than necessary. 

INTRODUCTION 
Like velocity analysis, traveltime tomography estimates a 

velocity model that explains the arrival times and moveouts of 
coherent arrivals. Traveltime tomography is most sensitive to 
smooth background changes in transmission velocities--those 
changes which must be known for depth migration or diffraction 
tomography. 

Current methods of seismic traveltime tomography use a 
variety of methods described as “ray-tracing” or “ray-shooting.” 
These methods invoke Snell’s law at boundaries of cells of 
constant velocity (Langen et al., 1985, offer improvements) or 
dynamically extrapolate differential ray equations (e.g., Wesson, 
1971). Other alternatives include relaxation methods (e.g., Aki 
and Richards, 1980). Berryman, 1989, constrains raypaths as a 
sum of low-order sinusoids and minimizes traveltimes with a 
simplex search algorithm. Van Trier and Symes, 1990, recently 
proposed applying perturbation theory directly to finite-difference 
extrapolations of the Eikonal equation. 

All these methods assume asymptotically infinite frequencies 
in the source, and by implication, infinitely thin raypaths. 
However, frequency content can limit tomographic resolution 
more drastically than angular coverage. Woodward, 1989, has 
built on the work of Hagedoorn, 1954, to replace raypaths in 
tomography by “band-limited raypaths” or “wavepaths.” 

With new explicit schemes (e.g., Moser, 1989) we can extra- 
polate traveltimes from sources or receivers to every point in a 
region of interest. Rather than search for a single fastest 
raypath, we can find Fresnel regions containing all paths that add 
constructively to first-arrivals. This approach robustly finds mini- 
mum traveltimes, whether direct or refracted, in complicated 
media with large velocity contrasts. 

The velocity model can be constrained as a sum of smooth 
basis functions of adjustable width in all dimensions (cf. Harlan, 
1989). As alternately reestimated wavepaths and velocities 
improve, the resolution of the velocity model can be allowed to 
increase--first vertically, then over all dimensions. The result is 
the smoothest, most stratified velocity model that explains the 
data. 

---____-- 

A DESCRIPTION OF THE DATA 
The cross-well data used in this report were recorded in 1989 

at the Conoco Borehole Test Facility. A source provided a 
rotary motion in one well while three-component accelerometers 
recorded the transmitted motion in a well 88.6 m away. Two 
directions of rotary motion were later decomposed into inline 
compressional motion and cross-line shear motion. 

Figure 1 shows a compressional (sonic) velocity log for the 
well containing receivers. This log shows the high velocity of the 
Ft. Riley limestone, which ranges from 15 m to 30 m in depth. 
An overlying limestone, approximately ‘2 m thick, is narrower 
than the shortest spatial wavelength and cannot carry significant 
refracted energy. Surrounding shales have less than half the 
velocity of the limestones. 

Figure 2 shows a typical shear-wave gather for a common 
receiver at 38.3 m depth. 63 traces, from left to right, 
correspond to increasing source depths from 3.0 m to 40.8 m. 
10 fied receivers ranged from 9.1 m to 42.0 m depth. Decon- 
volution of the recorded source waveform has compressed the 
data into 100 ms with a bandwidth of 70 - 280 Hz. Shear data 
has twice the resolution of compressional data. 

Only first arrivals can be picked and correlated with some 
confidence. The flat central arrivals correspond to source 
positions in the high-velocity Ft. Riley limestone (approximately 
2000 m/s). Low-velocity shales produce steep events. The slight 
ringing of waveforms has been modeled elastically as a sequence 
of many overlapping arrivals. At 280 Hz we would expect a 
7.6 m spatial wavelength in the limestone and less than half this 
length in shales. 

Figure 3 shows a model of fastest paths between every third 
shot (left) and all available receivers (right). The stratified shear 
velocity model (not logged directly) was proposed by a geologist 
from other available information. Notice that all paths pass 
through the limestones; large regions of the shales receive no 
coverage at all. Also, the angles of paths through the limestone 
do not vary as much as would the angles of straight lines. 

These plotted “wavepaths” required numerical tools that 
addressed two problems. 1) Wells are separated by only 12.5 
wavelengths, so thin raypaths are a poor approximation. 
2) Waves are bent considerably, so either refracted or direct 
arrivals can arrive first. 

TRACING WAVEPATHS 
According to Huygen’s principle, wave energy effectively 

travels along all possible paths between two points, including 
those that ignore Snell’s law. In the optical approximation 
(infinite frequencies), however, all significant contributions of 
energy follow paths that obey Fermat’s principle and locally 
minimize the traveltime. 

On the other hand, band-limited waves can follow paths that 
are not Fermat raypaths and still cover the distance between two 
points in almost the same time All arriving waves that are de- 
layed by less than half a wavelength will add constructively to the 
first arrival. These data have a minimum temporal wavelength of 
3.6 ms; thus, any waves that arrive in less than 1 ms of each other 
will be indistinguishable. Errors in picking first-arrival times will 
be even greater. 
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Figure 4 shows a gray region that contains many possible paths 
between a shallow source and a deep receiver. Each of these 
paths has a total traveltime no more than 1 ms greater than the 
minimum possible traveltime, according to the geologist’s velocity 
model. Three plotted lines show a central “median” path and the 
approximate half-width of this region. The gray region bends 
sharply at the edge of the high-velocity layer and then broadens. 
High velocities allow greater variations’in the path because these 
variations affect traveltimes less. 

Wave paths were calculated with a new, but simple numerical 
algorithm: 

With an explicit scheme, extrapolate minimum traveltimes 
from one source position to each point in the region of 
interest. Explicit schemes include finite-difference extra- 
polation of the Eikonal equation (Vidale, 1989), or the 
“graph theory” method of Moser, 1989 (which I use). 
Similarly, extrapolate traveltimes from one receiver location 
to each point in the region of interest. 
Add together the extrapolated traveltimes from source and 
receiver. The resulting table shows the traveltimes of paths 
which are obliged to pass through particular points in the 
model. The global minimum traveltime of this table is the 
minimum traveltime between the source and receiver. This 
minimum is realized at both the source and receiver loca- 
tions and also at each point along the Fermat raypath with 
global minimum traveltime. 
Find all points in the model whose tabulated traveltimes 
exceed the minimum traveltime by less than half a temporal 
wavelength. This region will be called the wave path of the 
first arrival. A smooth path that passes through the center 
of this region has a traveltime that differs little from that of 
the Fermat raypath. This representative “median” path will 
later be used for modeling traveltimes and tomographically 
improving velocities. The variable width of the path can be 
preserved as well. 

CHOOSING PARAMETERS FOR VELOCITIES 
Let us find the smoothest, most horizontally stratified velocity 

model possible to explain picked traveltimes. The resolution of 
inverted velocities will be limited by source bandwidth, by the dis- 
tribution of our measurements, and by errors in the positioning 
of wave paths. We should add sharper details (higher spatial fre- 
quencies) to the velocity model only if smoother models will not 
explain the data. Also, in such a geologically stratified region as 
at the Borehole Test Facility, we should not add more two- 
dimensional complexity than necessary. Since many possible 
models may explain the data equally well, let us choose the 
simplest, both mathematically and geologically. 

To control the resolution of the model, I constrain slowness, 
the reciprocal of velocity, as a sum of smooth basis functions. 
The widths of these basis functions can be narrowed as wave 
paths are improved, allowing sharper changes in velocities. 
Slowness will be more convenient to evaluate than velocity 
because traveltime is an integration of slowness along the length 
of a path. 

If sij represents the slownesses of node points, then the 
slowness at spatial coordinates x and z will be 

S(XJ) - cc i j s,, dr-’ dz-’ f[(x - ifW.d fKz - i 4/&l. 

dx and dz are the spatial sampling rates of the nodes. f(x) 
represents a bell-curve of unit area and unit width, such as a 
Gaussian or third-order polynomial. 

To improve a particular slowness model, we should constrain 
the perturbations with an appropriate density of basis functions, 
depending on the accuracy and width of estimated wave paths. 
Optimized perturbations can then be added to a gridded refer- 
ence slowness model of futed sampling (60 by 60 for these data). 
Alternating improvements in paths and slownesses will allow an 
increasing density of basis functions. 

ITERATIVE OPTIMIZATION 
Let us begin with the simplest possible model: 1) assume that 

paths are straight lines, and 2) assume a single average slowness. 
First, I constrain the slowness perturbation with only three basis 
functions over depth and with no lateral variation at all. 

I minimize errors between picked and modeled first-arrival 
times by optimizing slowness perturbations with a conjugate- 
gradient algorithm (Luenberger, 1984; Scales, 1987). This 
algorithm requires that we alternately perform forward modeling 
and its numerically adjoint operation, backprojection. Forward 
modeling links hvo steps: 1) gridding smooth slowness values 
from basis functions, and 2) integrating traveltimes from slow- 
nesses along known paths. Both operations are linear. The 
adjoint reverses these steps: 1) perturb slownesses along the 
paths with values proportional to errors in traveltime, and 2) find 
perturbations of basis functions from weighted sums of gridded 
values. 

Figure 5 shows the first revised velocity model and reestimated 
wavepaths, which have been drastically repositioned towards the 
higher velocity center. Each succeeding reestimate of velocities 
allowed an increasing number ofvertically variable basis functions 
(up to 25) until an optimal one-dimensional solution was ob- 
tained. Then, beginning again with smooth perturbations, a hvo- 
dimensionally variable velocity function was optimized (Figure 6). 

The bottom of the Ft. Riley is positioned as expected, but no 
thin shallow limestone appears above 15 m depth. Shallow 
velocities are much slower than expected. Modeled traveltimes 
had an error less than 1.8 ms -- within one temporal wavelength 
and the expected picking error. This model fits the picked data 
only 0.2 ms better than the entirely stratified model. If we had 
directly optimized a two-dimensional velocity model, we would 
see the imprint of an hour-glass-shaped distribution of raypaths. 
Instead, the stratified model has extrapolated reasonable 
velocities into regions not covered by first-arrivals. 

CONCLUSIONS 
Estimated shear velocities from Conoco’s cross-well data 

showed vertical resolution of approximately 3 m for a 70-280 Hz 
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bandwidth. Estimated lateral changes were insignificant, as 
expected in this geologically stratified area. An entirely stratified 
model explained the picked traveltimes to within the picking 
error. 

Because of large velocity contrasts, first-arriving waves did not 
pass through large regions of low-velocity shales. The margins, 
but not interiors, of these shales were resolvable from neigh- 
boring refractions. Only the interior of a high-velocity limestone 
received much angular coverage. Geologic layers did not carry 
any detectable refracted waves when thinner than the shortest 
seismic wavelength. 

The estimated interval velocity function extrapolated 
reasonable values into regions of poor ray coverage by con- 
verging first on the long spatial wavelengths and by encouraging 
stratification. Estimated wavepaths guide our interpretation of 
nonuniqueness and resolution. 
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source depth (3.0 - 40.8 m) 

FIG. 2. A common-receiver, shear-wave gather for a receiver at 
38.3 m depth. Traces show deeonvolved recorded 
waveforms (0 to 100 rns) from 63 sources in a well 
88.6 m away, increasing in depth (3.0 m - 40.8 m) from 
left to right. 
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